Giải bài 1.15 trang 23 SBT đại số và giải tích 11

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình:

LG a

\(\cos(x+3) =\dfrac{1}{3}\)

Phương pháp giải:

Phương trình \(\cos x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là

\(x=\pm\arccos a+k2\pi ,k \in \mathbb{Z}\)

Lời giải chi tiết:

\(\cos(x+3) =\dfrac{1}{3}\)

\(\Leftrightarrow x+3 = \pm\arccos\dfrac{1}{3}+k2\pi \)

\(\Leftrightarrow x =-3 \pm\arccos\dfrac{1}{3}+k2\pi ,k \in \mathbb{Z}\)

Vậy phương trình có nghiệm là

\(x =-3 \pm\arccos\dfrac{1}{3}+k2\pi ,k \in \mathbb{Z}\)

LG b

\(\cos(3x-45^o)=\dfrac{\sqrt{3}}{2}\)

Phương pháp giải:

Phương trình \(\cos x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) có \(\beta^o\) thỏa mãn \(\cos\beta^o=a\)
trong đó \(\beta^o=\arccos a\)

Khi đó phương trình có nghiệm là \(x=\pm\beta^o+k{360}^o ,k \in \mathbb{Z}\)

Lời giải chi tiết:

Ta có: \(\dfrac{\sqrt{3}}{2}=\cos {30}^o\)

Khi đó: \(\cos(3x-45^o)=\cos {30}^o\)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
3x - {45^0} = {30^0} + k{360^0}\\
3x - {45^0} = - {30^0} + k{360^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
3x = {75^0} + k{360^0}\\
3x = {15^0} + k{360^0}
\end{array} \right.
\end{array}\)

\(\Leftrightarrow \left[ \begin{array}{l} x= {25}^o+k{120}^o ,k \in \mathbb{Z}\\x= {5}^o+k{120}^o ,k \in\mathbb{Z}\end{array} \right. \)

Vậy nghiệm của phương trình là:

\(x= {25}^o+k{120}^o ,k \in \mathbb{Z}\)

và \( x= {5}^o+k{120}^o ,k \in\mathbb{Z} \)

LG c

\(\cos(2x+\dfrac{\pi}{3})=-\dfrac{1}{2}\)

Phương pháp giải:

Phương trình \(\cos x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là

\(x=\pm\arccos a+k2\pi ,k \in \mathbb{Z}\)

Lời giải chi tiết:

Ta có: \(-\dfrac{1}{2}=\cos \dfrac{2\pi}{3}\)

Khi đó:

\(\begin{array}{l}
\cos \left( {2x + \frac{\pi }{3}} \right) = \cos \frac{{2\pi }}{3}\\
\Leftrightarrow \left[ \begin{array}{l}
2x + \frac{\pi }{3} = \frac{{2\pi }}{3} + k2\pi \\
2x + \frac{\pi }{3} = - \frac{{2\pi }}{3} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{\pi }{3} + k2\pi \\
2x = - \pi + k2\pi
\end{array} \right.
\end{array}\)

\(\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{6} + k\pi \\
x = - \frac{\pi }{2} + k\pi
\end{array} \right.\)

Vậy phương trình có các nghiệm là:

\(x = \dfrac{\pi}{6}+k\pi ,k \in \mathbb{Z}\)

và \(x=-\dfrac{\pi}{2}+k\pi ,k \in \mathbb{Z}\)

LG d

\((2+\cos x)(3\cos2x-1)=0\).

Phương pháp giải:

Sử dụng công thức \(f(x)g(x)=0\)

\(\Leftrightarrow\left[ \begin{array}{l} f(x) = 0\\g(x) = 0\end{array} \right.\)

Phương trình \(\cos x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là

\(x=\pm\arccos a+k2\pi ,k \in \mathbb{Z}\)

Lời giải chi tiết:

Ta có: \((2+\cos x)(3\cos2x-1)=0\)

\(\Leftrightarrow\left[ \begin{array}{l} 2+\cos x = 0\,\,\,(1)\\3\cos2x-1 = 0\,\,\,(2)\end{array} \right.\)

\((1)\Leftrightarrow \cos x = -2\) (vô nghiệm)

\((2)\Leftrightarrow \cos 2x = \dfrac{1}{3}\)

\(\Leftrightarrow 2x = \pm\arccos\dfrac{1}{3}+k2\pi ,k\in\mathbb{Z}\)

\(\Leftrightarrow x = \pm\dfrac{1}{2}\arccos\dfrac{1}{3}+k\pi ,k\in\mathbb{Z}\)

Vậy nghiệm của phương trình là:

\(x = \pm\dfrac{1}{2}\arccos\dfrac{1}{3}+k\pi ,k\in\mathbb{Z}\)