Giải bài 3.9 trang 138 SBT hình học 11

Đề bài

Cho tứ giác \(ABCD\). Gọi \(M, N, P, Q\) lần lượt là trung điểm của các đoạn \(AC, BD, AD\) và có \(MN = PQ\). Chứng minh rằng \(AB ⊥ CD\).

Phương pháp giải - Xem chi tiết

Ta cần chứng minh \(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0\)

Lời giải chi tiết

Ta cần chứng minh \(\displaystyle \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0\)

Đặt \(\displaystyle \overrightarrow {AB} = \overrightarrow b ,\,\,\overrightarrow {AC} = \overrightarrow c ,\,\,\overrightarrow {AD} = \overrightarrow d \). Ta có:

\(\displaystyle \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AN}\) \(\displaystyle = - {1 \over 2}\overrightarrow {AC} + {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\)

Suy ra \(\displaystyle \overrightarrow {MN} = {1 \over 2}\left( {\overrightarrow b + \overrightarrow d - \overrightarrow c } \right)\)

\(\displaystyle \eqalign{
& \overrightarrow {QP} = \overrightarrow {QA} + \overrightarrow {AP} \cr
& = - {1 \over 2}\overrightarrow {A{\rm{D}}} + {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cr
& = {1 \over 2}\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right) \cr} \)

Theo giả thiết ta có:

\(\displaystyle MN = PQ \Leftrightarrow {\overrightarrow {MN} ^2} = {\overrightarrow {QP} ^2}\)

\(\displaystyle \eqalign{
& {\left( {\overrightarrow b + \overrightarrow d - \overrightarrow c } \right)^2} = {\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right)^2} \cr
& \Leftrightarrow \overrightarrow b .\overrightarrow d - \overrightarrow b .\overrightarrow c = \overrightarrow b .\overrightarrow c - \overrightarrow b .\overrightarrow d \cr
& \Leftrightarrow 2\overrightarrow b .\overrightarrow d - 2\overrightarrow b .\overrightarrow c = 0 \cr
& \Leftrightarrow \overrightarrow b .\left( {\overrightarrow d - \overrightarrow c } \right) = 0 \cr
& \Leftrightarrow \overrightarrow {AB} .\left( {\overrightarrow {A{\rm{D}}} - \overrightarrow {AC} } \right) = 0 \cr
& \Leftrightarrow \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0 \Leftrightarrow \overrightarrow {AB} \bot \overrightarrow {C{\rm{D}}} \cr} \)