Giải bài 5.62 trang 209 SBT đại số và giải tích 11

Đề bài

Tìm đạo hàm của hàm số sau:

\(y = {{1 + x - {x^2}} \over {1 - x + {x^2}}}.\)

Lời giải chi tiết

\(\begin{array}{l}
y' = \frac{{\left( {1 + x - {x^2}} \right)'\left( {1 - x + {x^2}} \right) - \left( {1 + x - {x^2}} \right)\left( {1 - x + {x^2}} \right)'}}{{{{\left( {1 - x + {x^2}} \right)}^2}}}\\
= \frac{{\left( {1 - 2x} \right)\left( {1 - x + {x^2}} \right) - \left( {1 + x - {x^2}} \right)\left( { - 1 + 2x} \right)}}{{{{\left( {1 - x + {x^2}} \right)}^2}}}\\
= \frac{{\left( {1 - 2x} \right)\left( {1 - x + {x^2}} \right) + \left( {1 + x - {x^2}} \right)\left( {1 - 2x} \right)}}{{{{\left( {1 - x + {x^2}} \right)}^2}}}\\
= \frac{{\left( {1 - 2x} \right)\left( {1 - x + {x^2} + 1 + x - {x^2}} \right)}}{{{{\left( {1 - x + {x^2}} \right)}^2}}}\\
= \frac{{2\left( {1 - 2x} \right)}}{{{{\left( {1 - x + {x^2}} \right)}^2}}}
\end{array}\)