Cho biểu thức \(f\left( x \right) = \dfrac{{2 - x}}{{x + 1}} + 2.\) Tập hợp tất cả các giá trị của \(x\) thỏa mãn bất phương trình \(f\left( x \right) < 0\) là
- Ta có $f\left( x \right) = \dfrac{{2 - x}}{{x + 1}} + 2 = \dfrac{{2 - x + 2\left( {x + 1} \right)}}{{x + 1}} = \dfrac{{x + 4}}{{x + 1}}.$
Phương trình $x + 4 = 0 \Leftrightarrow x = - \,4$ và $x + 1 = 0 \Leftrightarrow x = - \,1.$
- Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \,4; - \,1} \right).$
Tập nghiệm của bất phương trình $\left( {2x + 8} \right)\left( {1 - x} \right) > 0$ có dạng $\left( {a;b} \right).$ Khi đó $b - a$ bằng
Đặt $f\left( x \right) = \left( {2x + 8} \right)\left( {1 - x} \right)$
- Phương trình $2x + 8 = 0 \Leftrightarrow x = - \,4$ và $1 - x = 0 \Leftrightarrow x = 1.$
- Ta có bảng xét dấu
Từ bảng xét dấu ta có $f\left( x \right) > 0 \Leftrightarrow - \,4 < x < 1 \Leftrightarrow x \in \left( { - 4;\,1} \right).$
Khi đó $b = 1,\,\,a = - \,4 \Rightarrow b - a = 5.$
Tập nghiệm $S = \left[ {0;5} \right]$ là tập nghiệm của bất phương trình nào sau đây ?
Đặt $f\left( x \right) = x\left( {x - 5} \right).$
Phương trình $x = 0$ và $x - 5 = 0 \Leftrightarrow x = 5.$
- Ta có bảng xét dấu
- Dựa vào bảng xét dấu, ta thấy rằng $x \in \left[ {0;5} \right] \Leftrightarrow f\left( x \right) \le 0 \Leftrightarrow x\left( {x - 5} \right) \le 0.$
Tích của nghiệm nguyên âm lớn nhất và nghiệm nguyên dương nhỏ nhất của bất phương trình $\left( {3x - 6} \right)\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right) > 0$ là
Bất phương trình $\left( {3x - 6} \right)\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right) > 0 \Leftrightarrow 3{\left( {x - 2} \right)^2}\left( {x + 2} \right)\left( {x - 1} \right) > 0$
Vì ${\left( {x - 2} \right)^2} > 0,\,\,\forall x \ne 2$ nên bất phương trình trở thành $\left\{ \begin{array}{l}x \ne 2\\\left( {x + 2} \right)\left( {x - 1} \right) > 0\end{array} \right..$
Đặt $f\left( x \right) = \left( {x + 2} \right)\left( {x - 1} \right).$
Phương trình $x + 2 = 0 \Leftrightarrow x = - \,2$ và $x - 1 = 0 \Leftrightarrow x = 1.$
Ta có bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) > 0$$ \Leftrightarrow x \in \left( { - \,\infty ; - \,2} \right) \cup \left( {1; + \,\infty } \right).$
Kết hợp với điều kiện $x \ne 2,$ ta được $ \Leftrightarrow x \in \left( { - \,\infty ; - \,2} \right) \cup \left( {1;2} \right) \cup \left( {2; + \,\infty } \right).$
Do đó, nghiệm nguyên âm lớn nhất của bất phương trình là $ - \,3$ và nghiệm nguyên dương nhỏ nhất của bất phương trình là $3.$
Vậy tích cần tính là $\left( { - \,3} \right).3 = - \,9.$
Tập nghiệm của bất phương trình $2x\left( {4 - x} \right)\left( {3 - x} \right)\left( {3 + x} \right) > 0$ là
Đặt $f\left( x \right) = 2x\left( {4 - x} \right)\left( {3 - x} \right)\left( {3 + x} \right).$
Phương trình $2x = 0 \Leftrightarrow x = 0;\,\,$$4 - x = 0 \Leftrightarrow x = 4;\,\,$
Và $3 - x = 0 \Leftrightarrow x = 3;3 + x = 0 \Leftrightarrow x = - 3$.
Ta có bảng xét dấu:
Từ bảng xét dấu ta có $f\left( x \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x > 4\\0 < x < 3\\x < - \,3\end{array} \right. \Leftrightarrow x \in \left( { - \infty ;\, - 3} \right) \cup \left( {0;\,3} \right) \cup \left( {4;\, + \infty } \right).$
Suy ra tập nghiệm bất phương trình là hợp của ba khoảng.
Nghiệm nguyên nhỏ nhất thỏa mãn bất phương trình $\left( {x - 1} \right)\sqrt {x\left( {x + 2} \right)} \ge 0$ là
Điều kiện: \(x\left( {x + 2} \right) \ge 0\)
Đặt $f\left( x \right) = x\left( {x + 2} \right).$
Phương trình $x = 0$ và $x + 2 = 0 \Leftrightarrow x = - \,2.$
Bảng xét dấu:
Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 0\\x \le - \,2\end{array} \right..$
- Nếu \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right.\) thì bất phương trình trở thành \(0 \ge 0\) (đúng).
- Nếu \(\left[ \begin{array}{l}x > 0\\x < - 2\end{array} \right.\) thì \(f\left( x \right) > 0\) nên bất phương trình tương đương \(x - 1 \ge 0 \Leftrightarrow x \ge 1\).
Kết hợp \(\left[ \begin{array}{l}x > 0\\x < - 2\end{array} \right.\) ta được \(x \ge 1\).
Vậy bất phương trình có tập nghiệm \(S = \left\{ { - 2} \right\} \cup \left\{ 0 \right\} \cup \left[ {1; + \infty } \right)\).
Do đó nghiệm nguyên nhỏ nhất của bất phương trình là \(x = - 2\).
Bất phương trình $\dfrac{3}{{2 - x}} < 1$ có tập nghiệm là
Bất phương trình $\dfrac{3}{{2 - x}} < 1 \Leftrightarrow \dfrac{3}{{2 - x}} - 1 < 0 \Leftrightarrow \dfrac{{x + 1}}{{2 - x}} < 0.$
Đặt $f\left( x \right) = \dfrac{{x + 1}}{{2 - x}}.$ Ta có $x + 1 = 0 \Leftrightarrow x = - \,1$ và $2 - x = 0 \Leftrightarrow x = 2.$
Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) < 0 \Leftrightarrow \left[ \begin{array}{l}x < - \,1\\x > 2\end{array} \right..$
Vậy tập nghiệm của bất phương trình là $S = \left( { - \,\infty ; - \,1} \right) \cup \left( {2; + \,\infty } \right).$
Tập nghiệm của bất phương trình $\dfrac{{{x^2} + x - 3}}{{{x^2} - 4}} \ge 1$ là
Bất phương trình $\dfrac{{{x^2} + x - 3}}{{{x^2} - 4}} \ge 1 \Leftrightarrow \dfrac{{{x^2} + x - 3}}{{{x^2} - 4}} - 1 \ge 0 \Leftrightarrow \dfrac{{x + 1}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} \ge 0.$
Đặt $f\left( x \right) = \dfrac{{x + 1}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}.$ Ta có $x + 1 = 0 \Leftrightarrow x = - \,1$ và $\left( {x - 2} \right)\left( {x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - \,2\\x = 2\end{array} \right..$
Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l} - \,2 < x \le - \,1\\x > 2\end{array} \right..$
Vậy tập nghiệm của bất phương trình là $S = \left( { - \,2; - \,1} \right] \cup \left( {2; + \,\infty } \right).$
Bất phương trình \(\dfrac{4}{{x - 1}} - \dfrac{2}{{x + 1}} < 0\) có tập nghiệm là
Bất phương trình \(\dfrac{4}{{x - 1}} - \dfrac{2}{{x + 1}} < 0 \Leftrightarrow \dfrac{{2x + 6}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} < 0.\)
Đặt $f\left( x \right) = \dfrac{{2x + 6}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}.$
Ta có $2x + 6 = 0 \Leftrightarrow x = - \,3$ và $\left( {x - 1} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - \,1\end{array} \right..$
Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) < 0 \Leftrightarrow \left[ \begin{array}{l}x < - \,3\\ - \,1 < x < 1\end{array} \right..$
Vậy tập nghiệm của bất phương trình là $S = \left( { - \,\infty ; - \,3} \right) \cup \left( { - \,1;1} \right).$
Bất phương trình $\dfrac{1}{{x + 1}} < \dfrac{1}{{{{\left( {x - 1} \right)}^2}}}$ có tập nghiệm \(S\) là
Bất phương trình $\dfrac{1}{{x + 1}} < \dfrac{1}{{{{\left( {x - 1} \right)}^2}}} \Leftrightarrow \dfrac{1}{{x + 1}} - \dfrac{1}{{{{\left( {x - 1} \right)}^2}}} < 0.$
$ \Leftrightarrow \dfrac{{{{\left( {x - 1} \right)}^2} - \left( {x + 1} \right)}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}} < 0 \Leftrightarrow \dfrac{{x\left( {x - 3} \right)}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}} < 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\\dfrac{{x\left( {x - 3} \right)}}{{x + 1}} < 0\end{array} \right.$ (vì ${\left( {x - 1} \right)^2} > 0,\,\,\forall x \ne 1$).
Đặt $f\left( x \right) = \dfrac{{x\left( {x - 3} \right)}}{{x + 1}}.$ Ta có $x - 3 = 0 \Leftrightarrow x = 3$ và $x + 1 = 0 \Leftrightarrow x = - \,1.$
Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) < 0 \Leftrightarrow \left[ \begin{array}{l}x < - \,1\\0 < x < 3\end{array} \right..$
Kết hợp với điều kiện $x \ne 1,$ ta được tập nghiệm $S = \left( { - \,\infty ; - \,1} \right) \cup \left( {0;1} \right) \cup \left( {1;3} \right).$
Bất phương trình $\dfrac{{x + 4}}{{{x^2} - 9}} - \dfrac{2}{{x + 3}} < \dfrac{{4x}}{{3x - {x^2}}}$ có nghiệm nguyên lớn nhất là
Bất phương trình tương đương với
$\dfrac{{x\left( {x + 4} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} - \dfrac{{2x\left( {x - 3} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} < - \dfrac{{4x\left( {x + 3} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} \Leftrightarrow \dfrac{{3x + 22}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} < 0.$
Đặt $f\left( x \right) = \dfrac{{3x + 22}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}.$
Ta có $3x + 22 = 0 \Leftrightarrow x = - \dfrac{{22}}{3};\,\,\left\{ \begin{array}{l}x - 3 = 0 \Leftrightarrow x = 3\\x + 3 = 0 \Leftrightarrow x = - \,3\end{array} \right..$
Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \,\infty ; - \dfrac{{22}}{3}} \right) \cup \left( { - \,3;3} \right).$
Vậy nghiệm nguyên lớn nhất thỏa mãn bất phương trình là $x = 2.$
Nghiệm của bất phương trình $\left| {2x - 3} \right| \le 1$ là
Ta có $\left| {2x - 3} \right| \le 1 \Leftrightarrow - \,1 \le 2x - 3 \le 1 \Leftrightarrow 2 \le 2x \le 4 \Leftrightarrow 1 \le x \le 2.$
Tập nghiệm của bất phương trình $\left| {x - 3} \right| > - 1$ là
Vì $\left| {x - 3} \right| \ge 0,\,\,\forall x \in \mathbb{R}$ nên suy ra $\left| {x - 3} \right| > - 1,\,\,\forall x \in \mathbb{R}.$
Vậy tập nghiệm của bất phương trình là $S = \mathbb{R}.$
Tập nghiệm của bất phương trình $\left| {5x - 4} \right| \ge 6$ có dạng $S = \left( { - \,\infty ;a} \right] \cup \left[ {b; + \,\infty } \right).$ Tính tổng $P = 5a + b.$
Bất phương trình $\left| {5x - 4} \right| \ge 6 \Leftrightarrow \left[ \begin{array}{l}5x - 4 \ge 6\\5x - 4 \le - \,6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}5x \ge 10\\5x \le - \,2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le - \dfrac{2}{5}\end{array} \right..$
Do đó, tập nghiệm của bất phương trình là $S = \left( { - \,\infty ; - \dfrac{2}{5}} \right] \cup \left[ {2; + \,\infty } \right).$
Mà $S = \left( { - \,\infty ;a} \right] \cup \left[ {b; + \,\infty } \right)$ nên $\left\{ \begin{array}{l}a = - \dfrac{2}{5}\\b = 2\end{array} \right.$
Vậy \(P = 5a + b = 5.\left( { - \dfrac{2}{5}} \right) + 2 = 0\)
Bất phương trình : $\left| {3x - 3} \right| \le \left| {2x + 1} \right|$ có nghiệm là
Ta có $\left| {3x - 3} \right| \le \left| {2x + 1} \right| \Leftrightarrow {\left| {3x - 3} \right|^2} \le {\left| {2x + 1} \right|^2} \Leftrightarrow {\left( {3x - 3} \right)^2} - {\left( {2x + 1} \right)^2} \le 0$
$ \Leftrightarrow \left( {3x - 3 - 2x - 1} \right)\left( {3x - 3 + 2x + 1} \right) \le 0 \Leftrightarrow \left( {x - 4} \right)\left( {5x - 2} \right) \le 0 $
Xét dấu \(\left( {x - 4} \right)\left( {5x - 2} \right)\) ta được:
Suy ra $\dfrac{2}{5} \le x \le 4$
Vậy tập nghiệm của bất phương trình là $S = \left[ {\dfrac{2}{5};4} \right].$
Hỏi có bao nhiêu giá trị nguyên $x$ trong $\left[ { - \,2017;2017} \right]$ thỏa mãn bất phương trình \(\left| {2x + 1} \right| < 3x\) ?
TH1. Với $2x + 1 \ge 0 \Leftrightarrow x \ge - \dfrac{1}{2},$ khi đó $\left| {2x + 1} \right| < 3x \Leftrightarrow 2x + 1 < 3x \Leftrightarrow x > 1.$
Kết hợp với điều kiện $x \ge - \dfrac{1}{2}$ suy ra ${S_1} = \left( {1; + \,\infty } \right).$
TH2. Với $2x + 1 < 0 \Leftrightarrow x < - \dfrac{1}{2},$ khi đó $\left| {2x + 1} \right| < 3x \Leftrightarrow - \,2x - 1 < 3x $ $\Leftrightarrow x > - \dfrac{1}{5}.$
Kết hợp với điều kiện $x < - \dfrac{1}{2}$ suy ra ${S_2} = \emptyset .$
Suy ra tập nghiệm của bất phương trình là $S = {S_1} \cup {S_2} = \left( {1; + \,\infty } \right).$
Mà \(x \in \left[ { - 2017;2017} \right]\) nên \(x \in \left( {1;2017} \right]\) hay \(x \in \left\{ {2;3;...;2017} \right\}\)
Vậy có \(2016\) giá trị nguyên của \(x\) thỏa mãn.
Số nghiệm nguyên thỏa mãn bất phương trình $\left| {x + 2} \right| + \left| { - 2x + 1} \right| \le x + 1$ là
Xét bất phương trình $\left| {x + 2} \right| + \left| { - \,2x + 1} \right| \le x + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right).$
Bảng xét dấu
TH1. Với $x < - \,2,$ khi đó $\left( * \right) \Leftrightarrow \left( { - \,x - 2} \right) + \left( { - \,2x + 1} \right) \le x + 1 $$\Leftrightarrow - \,2 \le 4x \Leftrightarrow x \ge - \dfrac{1}{2}.$
Kết hợp với điều kiện $x < - \,2,$ ta được tập nghiệm ${S_1} = \emptyset .$
TH2. Với $ - \,2 \le x < \dfrac{1}{2},$ khi đó $\left( * \right) \Leftrightarrow x + 2 - 2x + 1 \le x + 1 $$\Leftrightarrow 2x \ge 2 \Leftrightarrow x \ge 1.$
Kết hợp với điều kiện $ - \,2 \le x < \dfrac{1}{2},$ ta được tập nghiệm ${S_2} = \emptyset .$
TH3. Với $x \ge \dfrac{1}{2},$ khi đó $\left( * \right) \Leftrightarrow x + 2 - \left( { - 2x + 1} \right) \le x + 1 $$\Leftrightarrow 2x \le 0 \Leftrightarrow x \le 0.$
Kết hợp với điều kiện $x \ge \dfrac{1}{2},$ ta được tập nghiệm ${S_3} = \emptyset .$
Vậy tập nghiệm của bất phương trình là $S = {S_1} \cup {S_2} \cup {S_3} = \emptyset .$
Bất phương trình $\left| {x + 2} \right| - \left| {x - 1} \right| < x - \dfrac{3}{2}$ có tập nghiệm là
Xét bất phương trình $\left| {x + 2} \right| - \left| {x - 1} \right| \le x - \dfrac{3}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right).$
Lập bảng xét dấu
TH1. Với $x < - \,2,$ khi đó $\left( * \right) \Leftrightarrow - \,x - 2 + x - 1 < x - \dfrac{3}{2} \Leftrightarrow x > - \dfrac{3}{2}.$
Kết hợp với điều kiện $x < - \,2,$ ta được tập nghiệm ${S_1} = \emptyset .$
TH2. Với $ - \,2 \le x < 1,$ khi đó $\left( * \right) \Leftrightarrow x + 2 + x - 1 < x - \dfrac{3}{2} \Leftrightarrow x < - \dfrac{5}{2}.$
Kết hợp với điều kiện $ - \,2 \le x < 1,$ ta được tập nghiệm ${S_2} = \emptyset .$
TH3. Với $x \ge 1,$ khi đó $\left( * \right) \Leftrightarrow x + 2 - x + 1 < x - \dfrac{3}{2} \Leftrightarrow x > \dfrac{9}{2}.$
Kết hợp với điều kiện $x \ge 1,$ ta được tập nghiệm ${S_3} = \left( {\dfrac{9}{2}; + \,\infty } \right).$
Vậy tập nghiệm của bất phương trình là $S = {S_1} \cup {S_2} \cup {S_3} = \left( {\dfrac{9}{2}; + \,\infty } \right).$
Cho bảng xét dấu:
Hàm số có bảng xét dấu như trên làGọi hàm số cần tìm có dạng \(f\left( x \right) = ax + b\)
Nhìn bảng xét dấu ta thấy với \({x_1} > - 2\) thì \(f\left( {{x_1}} \right) < 0 \Rightarrow \) hệ số \(a < 0\) \( \Rightarrow \) Loại B, D
Mặt khác với \(x = - 2\) thì \(f\left( x \right) = 0 \Rightarrow \) Chọn A.
Bất phương trình \(\dfrac{2}{{x + 1}} > \dfrac{5}{{x - 2}}\) có số nghiệm nguyên thuộc đoạn \(\left[ {0;10} \right]\) là
Điều kiện: \(\left\{ \begin{array}{l}x \ne - 1\\x \ne 2\end{array} \right..\) Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{2}{{x + 1}} > \dfrac{5}{{x - 2}}\\ \Leftrightarrow \dfrac{2}{{x + 1}} - \dfrac{5}{{x - 2}} > 0\\ \Leftrightarrow \dfrac{{2x - 4 - 5x - 5}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} > 0\\ \Leftrightarrow - \dfrac{{3x + 9}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} > 0\\ \Leftrightarrow \dfrac{{x + 3}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} < 0\end{array}\)
Ta có bảng xét dấu:
\( \Rightarrow \dfrac{{x + 3}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} < 0 \Leftrightarrow \left[ \begin{array}{l}x < - 3\\ - 1 < x < 2\end{array} \right.\)
Lại có: \(\left\{ \begin{array}{l}x \in \mathbb{Z}\\x \in \left[ {0;\,\,10} \right]\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \in \mathbb{Z}\\x \in \left[ {0;2} \right)\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right..\)
Vậy bất phương trình có 2 nghiệm nguyên thỏa mãn.