Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với \(n = k\) thì ta cần chứng minh mệnh đề đúng đến:
Nếu ta giả sử mệnh đề đúng với \(n = k\) thì ta cần chứng minh mệnh đề đúng với \(n = k + 1\).
Đối với bài toán chứng minh \(P\left( n \right)\) đúng với mọi \(n \ge p\) với \(p\) là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:
Đối với bài toán chứng minh \(P\left( n \right)\) đúng với mọi \(n \ge p\) với \(p\) là số tự nhiên cho trước thì:
- Bước 1: Chứng minh \(P\left( n \right)\) đúng với \(n = p\).
- Bước 2: Với \(k \ge p\) là một số nguyên dương tùy ý, giả sử \(P\left( n \right)\) đúng với \(n = k\), chứng minh \(P\left( n \right)\) cũng đúng khi \(n = k + 1\).
Từ đó ta thấy, ở bước đầu tiên ta cần chứng minh mệnh đề đúng với \(n = p\) chứ không phải \(n = 1\).
Dùng quy nạp chứng minh mệnh đề chứa biến \(P\left( n \right)\) đúng với mọi số tự nhiên $n \ge p$ (\(p\) là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề \(P\left( n \right)\) đúng với \(n = k\). Khẳng định nào sau đây là đúng?
Ở bước 2 ta cần giả sử mệnh đề đúng với \(n = k\) với \(k \ge p\).
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến \(P\left( n \right)\) đúng với mọi số tự nhiên $n \ge p$ (\(p\) là một số tự nhiên), ta tiến hành hai bước:
\( \bullet \) Bước 1, kiểm tra mệnh đề \(P\left( n \right)\) đúng với \(n = p.\)
\( \bullet \) Bước 2, giả thiết mệnh đề \(P\left( n \right)\) đúng với số tự nhiên bất kỳ \(n = k \ge p\) và phải chứng minh rằng nó cũng đúng với \(n = k + 1.\)
Trong hai bước trên:
Đối với bài toán chứng minh \(P\left( n \right)\) đúng với mọi \(n \ge p\) với \(p\) là số tự nhiên cho trước thì:
- Bước 1: Chứng minh \(P\left( n \right)\) đúng với \(n = p\).
- Bước 2: Với \(k \ge p\) là một số nguyên dương tùy ý, giả sử \(P\left( n \right)\) đúng với \(n = k\), chứng minh \(P\left( n \right)\) cũng đúng khi \(n = k + 1\).
Từ lý thuyết trên ta thấy cả hai bước trên đều đúng.
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với \(n = k + 1\) thì ta cần chứng minh mệnh đề đúng với:
Phương pháp quy nạo toán học:
- Bước 1: Chứng minh \(P\left( n \right)\) đúng với \(n = 1\).
- Bước 2: Với \(k\) là một số nguyên dương tùy ý, giả sử \(P\left( n \right)\) đúng với \(n = k\), chứng minh \(P\left( n \right)\) cũng đúng khi \(n = k + 1\).
Do đó ta thấy, ở bước 2, nếu ta giả sử mệnh đề đúng với \(n = k + 1\) thì ta cần chứng minh mệnh đề đúng với \(n = k + 2\).
Một học sinh chứng minh mệnh đề ${\rm{''}}{8^n} + 1$ chia hết cho ${\rm{7, }}\forall n \in {\mathbb{N}^*}''$ \(\left( * \right)\) như sau:
\( \bullet \) Giả sử \(\left( * \right)\) đúng với \(n = k\), tức là ${8^k} + 1$ chia hết cho \(7.\)
\( \bullet \) Ta có: ${8^{k + 1}} + 1 = 8\left( {{8^k} + 1} \right) - 7$, kết hợp với giả thiết ${8^k} + 1$ chia hết cho \(7\) nên suy ra được ${8^{k + 1}} + 1$ chia hết cho \(7.\) Vậy đẳng thức \(\left( * \right)\) đúng với mọi \(n \in {\mathbb{N}^*}.\)
Khẳng định nào sau đây là đúng?
Quan sát lời giải trên ta thấy:
Học sinh thực hiện thiếu bước 1: Kiểm tra \(n = 1\) thì \({8^1} + 1 = 9\) không chia hết cho \(7\) nên mệnh đề đó sai.
Với \(n \in {N^*}\), ta xét các mệnh đề: $P:$“\({7^n} + 5\) chia hết cho $2$”; $Q:$ “\({7^n} + 5\) chia hết cho $3$” và $R:$ “\({7^n} + 5\) chia hết cho $6$”. Số mệnh đề đúng trong các mệnh đề trên là:
Bằng quy nạp toán học ta chứng minh được \({7^n} + 5\) chia hết cho $6$.
Thật vậy, với $n = 1$ ta có: \({7^1} + 5 = 12\,\, \vdots \,\,6\)
Giả sử mệnh đề đúng với $n = k$, nghĩa là \({7^k} + 5\) chia hết cho $6$, ta chứng minh mệnh đề cũng đúng với $n = k + 1$, nghĩa là phải chứng minh \({7^{k + 1}} + 5\) chia hết cho $6$.
Ta có: \({7^{k + 1}} + 5 = 7\left( {{7^k} + 5} \right) - 30\)
Theo giả thiết quy nạp ta có \({7^k} + 5\) chia hết cho $6$, và $30$ chia hết cho $6$ nên \(7\left( {{7^k} + 5} \right) - 30\) cũng chia hết cho $6$.
Do đó mệnh đề đúng với $n = k + 1$.
Vậy \({7^n} + 5\) chi hết cho $6$ với mọi \(n \in N^*\).
Mọi số chia hết cho $6$ đều chia hết cho $2$ và chia hết cho $3$.
Do đó cả 3 mệnh đề đều đúng.
Giá trị của tổng $S = 1-2 + 3-4 + ... - 2n + \left( {2n + 1} \right)$ là:
Với $n = 0$ ta có: $S = 1$
Với $n = 1$ ta có $S = 1 – 2 + 3 = 2$
Với $n = 2$ ta có $S = 1 – 2 + 3 – 4 + 5 = 3$
Dự đoán $S = n + 1 (*)$, ta sẽ chứng minh $(*)$ đúng bằng quy nạp.
Với $n = 0$ đương nhiên $(*)$ đúng.
Giả sử $(*)$ đúng với $n = k$, tức là \({S_k} = 1 - 2 + 3 - 4 + ... - 2k + \left( {2k + 1} \right) = k + 1\), ta chứng minh $(*)$ đúng với $n =k+1$.
Ta có:
\(\begin{array}{l}{S_{k + 1}} = 1 - 2 + 3 - 4 + ... - 2\left( {k + 1} \right) + \left( {2\left( {k + 1} \right) + 1} \right)\\ = \left( {1 - 2 + 3 - 4 + ... - 2k + 2k + 1} \right) - \left( {2k + 2} \right) + \left( {2k + 3} \right) = {S_k} - \left( {2k + 2} \right) + \left( {2k + 3} \right) = k + 1 + 1.\end{array}\)
Vậy $(*)$ đúng với mọi số tự nhiên $n$, tức là $S = n + 1$.
Với mọi số nguyên dương $n$, tổng \({S_n} = 1.2 + 2.3 + 3.4 + ... + n\left( {n + 1} \right)\) là:
Với $n = 1$ ta có: \({S_1} = 1.2 = 2\), do đó đáp án A, C sai.
Ta chứng minh \({S_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3}\,\,\left( * \right)\) đúng với mọi số nguyên dương $n$.
Giả sử $(*)$ đúng đến $n = k (k \ge 1)$, tức là \({S_k} = 1.2 + 2.3 + 3.4 + ... + k\left( {k + 1} \right) = \dfrac{{k\left( {k + 1} \right)\left( {k + 2} \right)}}{3},\) ta chứng minh $(*)$ đúng đến $n = k + 1$, tức là cần chứng minh \({S_{k + 1}} = 1.2 + 2.3 + 3.4 + ... + \left( {k + 1} \right)\left( {k + 2} \right) = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}{3},\)
Ta có:
\(\begin{array}{l}{S_{k + 1}} = 1.2 + 2.3 + 3.4 + ... + k\left( {k + 1} \right) + \left( {k + 1} \right)\left( {k + 2} \right) = \dfrac{{k\left( {k + 1} \right)\left( {k + 2} \right)}}{3} + \left( {k + 1} \right)\left( {k + 2} \right)\\ = \dfrac{{\left( {k + 1} \right)\left( {{k^2} + 2k + 3k + 6} \right)}}{3} = \dfrac{{\left( {k + 1} \right)\left( {{k^2} + 5k + 6} \right)}}{3} = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}{3}.\end{array}\)
Vậy $(*)$ đúng với mọi số nguyên dương $n$.
Kí hiệu \(k! = k\left( {k - 1} \right)...2.1,\forall k \in {\mathbb{N}^*}\). Với \(n \in {\mathbb{N}^*}\), đặt \({S_n} = 1.1! + 2.2! + ... + n.n!\). Mệnh đề nào dưới đây là đúng?
Cách 1: Kiểm nghiệm từng phương án đúng đối với những giá trị cụ thể của \(n\).
Với \(n = 1\) thì \({S_1} = 1.1! = 1\) (Loại ngay được các phương án A, C, D).
Bất đẳng thức nào sau đây đúng? Với mọi số tự nhiên $n$ thỏa \(n \ge 3\) thì:
Với $n = 3$ ta loại được đáp án A, B và C.
Ta chứng minh đáp án D đúng bằng phương pháp quy nạp toán học.
Bất đẳng thức \({2^n} > 2n + 1\) đúng với $n = 3$ vì $8 > 7$.
Giả sử bất đẳng thức đúng đến \(n = k \ge 3\), tức là \({2^k} > 2k + 1\), ta chứng minh bất đẳng thức đúng đến $n = k + 1$, tức là cần chứng minh \({2^{k + 1}} > 2\left( {k + 1} \right) + 1 = 2k + 3.\)
Ta có: \({2^{k + 1}} = {2.2^k} > 2\left( {2k + 1} \right) = 4k + 2 = 2k + 3 + 2k - 1.\) Vì \(k \ge 4 \Rightarrow 2k - 1 \ge 7 > 0 \Rightarrow {2^{k + 1}} > 2k + 3\)
Do đó bất đẳng thức đúng đến $n = k + 1$.
Vậy BĐT đúng với mọi số tự nhiên \(n \ge 3.\)
Giả sử $Q$ là tập con của tập hợp các số nguyên dương sao cho
a) \(k \in Q\)
b) \(n \in Q \Rightarrow n + 1 \in Q\,\,\forall n \ge k.\)
Đáp án A: sai vì \(Q \subset {N^*}\) chứ không phải \({N^*} \subset Q\), nên mọi số nguyên dương không thể thuộc \(Q\) hết được.
Đáp án B: đúng vì theo lý thuyết của phương pháp quy nạp toán học.
Đáp án C: sai vì theo giả thiết \(b)\) thì phải là số tự nhiên lớn hơn \(k\) thuộc \(Q\).
Đáp án D: sai vì số nguyên âm không thuộc \(Q\).
Cho tổng \({S_n} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{n\left( {n + 1} \right)}}\). Mệnh đề nào đúng?
Cách 1:
Bằng phương pháp quy nạp toán học, ta sẽ chứng minh được \({S_n} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{n\left( {n + 1} \right)}} = \dfrac{n}{{n + 1}}\,\,\left( * \right)\)
Thật vậy, với $n = 1$ ta có \({S_1} = \dfrac{1}{{1.2}} = \dfrac{1}{2} = \dfrac{1}{{1 + 1}}\)
Giả sử (*) đúng đến $n = k(k \ge 1) $, khi đó ta có:
\({S_k} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{k\left( {k + 1} \right)}} = \dfrac{k}{{k + 1}}\), ta chứng minh (*) đúng đến $n = k + 1$, tức là cần chứng minh
\({S_{k + 1}} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{k + 1}}{{k + 2}}\)
Ta có:
\(\begin{array}{l}{S_{k + 1}} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{k\left( {k + 1} \right)}} + \dfrac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}}\\ = \dfrac{k}{{k + 1}} + \dfrac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{k\left( {k + 2} \right) + 1}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{{k^2} + 2k + 1}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{{{\left( {k + 1} \right)}^2}}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{\left( {k + 1} \right)}}{{\left( {k + 2} \right)}}.\end{array}\)
Vậy $(*)$ đúng với mọi số nguyên dương $n$.
So sánh \(\dfrac{{{a^n} + {b^n}}}{2}\) và \({\left( {\dfrac{{a + b}}{2}} \right)^n}\) , với \(a \ge 0,b \ge 0,n \in {N^*}\) ta được:
Với $n = 1$ ta có \(\dfrac{{a + b}}{2} = \dfrac{{a + b}}{2}\), do đó loại đáp án A.
Với $n = 2$, chọn bất kì $a = 1,b = 2$ ta có:
\(\dfrac{{{a^n} + {b^n}}}{2} = \dfrac{{{1^2} + {2^2}}}{2} = \dfrac{5}{2},\) \({\left( {\dfrac{{a + b}}{2}} \right)^n} = {\left( {\dfrac{{1 + 2}}{2}} \right)^2} = \dfrac{9}{4} \) \(\Rightarrow \dfrac{{{a^n} + {b^n}}}{2} > {\left( {\dfrac{{a + b}}{2}} \right)^n} \)
Đáp án C sai.
Ta chứng minh đáp án B đúng với mọi \(a \ge 0,b \ge 0,n \in {N^*}\) bằng phương pháp quy nạp.
Với $n = 1$ mệnh đề đúng.
Giả sử mệnh đề đúng đến \(n = k\left( {k \ge 1} \right) \Leftrightarrow \dfrac{{{a^k} + {b^k}}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^k}\left( 1 \right)\)
Ta phải chứng minh \(\dfrac{{{a^{k + 1}} + {b^{k + 1}}}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^{k + 1}}\)
Thật vậy, ta nhân $2$ vế của (1) với \(\dfrac{{a + b}}{2} > 0\) ta có:
\(\dfrac{{{a^k} + {b^k}}}{2}.\dfrac{{a + b}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^k}.\dfrac{{a + b}}{2} \Leftrightarrow \dfrac{{{a^{k + 1}} + {a^k}b + a{b^k} + {b^{k + 1}}}}{4} \ge {\left( {\dfrac{{a + b}}{2}} \right)^{k + 1}}\left( 2 \right)\)
Do \(a \ge 0,b \ge 0\). Nếu \(a \ge b \ge 0 \Rightarrow \left( {{a^k} - {b^k}} \right)\left( {a - b} \right) \ge 0\), nếu \(0 \le a \le b \Rightarrow \left( {{a^k} - {b^k}} \right)\left( {a - b} \right) \ge 0\)
\(\begin{array}{l} \Rightarrow \left( {{a^k} - {b^k}} \right)\left( {a - b} \right) \ge 0\,\,\,\forall a \ge 0,b \ge 0\\ \Rightarrow {a^{k + 1}} + {b^{k + 1}} \ge {a^k}b + a{b^k} \Rightarrow \dfrac{{{a^{k + 1}} + {a^k}b + a{b^k} + {b^{k + 1}}}}{4} \le \dfrac{{{a^{k + 1}} + {a^{k + 1}} + {b^{k + 1}} + {b^{k + 1}}}}{4} = \dfrac{{{a^{k + 1}} + {b^{k + 1}}}}{2}\end{array}\)
Từ (2) suy ra $\dfrac{{{a^{k + 1}} + {b^{k + 1}}}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^{k + 1}}$, do đó mệnh đề đúng đến $n = k + 1$.
Vậy mệnh đề đúng với mọi $n,a,b$ thỏa mãn điều kiện bài toán.