Tìm tập xác định của hàm số$y = \dfrac{{x - 2}}{{{x^3} + {x^2} - 5x - 2}}$
ĐKXĐ: \({x^3} + {x^2} - 5x - 2 \ne 0\)\( \Leftrightarrow \left( {x - 2} \right)\left( {{x^2} + 3x + 1} \right) \ne 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne 2}\\{x \ne \dfrac{{ - 3 \pm \sqrt 5 }}{2}}\end{array}} \right.\)
Suy ra tập xác định của hàm số là ${\rm{D}} = \mathbb{R}\backslash \left\{ {2;\dfrac{{ - 3 - \sqrt 5 }}{2};\dfrac{{ - 3 + \sqrt 5 }}{2}} \right\}$
Tìm tập xác định của hàm số $y = \dfrac{{\sqrt {x + 2} }}{{x\sqrt {{x^2} - 4x + 4} }}$
\(\left\{ {\begin{array}{*{20}{c}}{x \ne 0}\\\begin{array}{l}{x^2} - 4x + 4 > 0\\x + 2 \ge 0\end{array}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne 0}\\\begin{array}{l}{\left( {x - 2} \right)^2} > 0\\x \ge - 2\end{array}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne 0}\\\begin{array}{l}x \ne 2\\x \ge - 2\end{array}\end{array}} \right.\)
Suy ra tập xác định của hàm số là ${\rm{D}} = \left[ { - 2; + \infty } \right)\backslash \left\{ {0;2} \right\}$.
Tìm tập xác định của hàm số$y = \left\{ \begin{array}{l}\dfrac{1}{x}\quad khi\;x \ge 1\\\sqrt {x + 1} \quad khi\;x < 1\end{array} \right.$
Khi \(x \ge 1\) thì hàm số là \(y = \dfrac{1}{x}\) luôn xác định với $x \ge 1$.
$=>$ ${D_1} = \left[ {1; + \infty } \right)$
Khi \(x < 1\) thì hàm số là \(y = \sqrt {x + 1} \) xác định khi
\(\left\{ {\begin{array}{*{20}{c}}{x < 1}\\{x + 1 \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x < 1}\\{x \ge - 1}\end{array}} \right.\\ \Leftrightarrow - 1 \le x < 1\)
$=>$${D_2} = \left[ { - 1;1} \right)$
Do đó hàm số đã cho có tập xác định $D = \left[ {1; + \infty } \right) \cup \left[ { - 1;1} \right) = \left[ { - 1; + \infty } \right)$
Cho hàm số: \(y = \dfrac{{mx}}{{\sqrt {x - m + 2} - 1}}\) với \(m\) là tham số. Tìm \(m\) để hàm số xác định trên \(\left( {0;1} \right)\)
ĐKXĐ \(\left\{ {\begin{array}{*{20}{c}}{x - m + 2 \ge 0}\\{\sqrt {x - m + 2} \ne 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge m - 2}\\{x \ne m - 1}\end{array}} \right.\)
Suy ra tập xác định của hàm số là ${\rm{D}} = \left[ {m - 2; + \infty } \right)\backslash \left\{ {m - 1} \right\}$.
Hàm số xác định trên \(\left( {0;1} \right) \Leftrightarrow \left( {0;1} \right) \subset \left[ {m - 2;m - 1} \right) \cup \left( {m - 1; + \infty } \right)\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left( {0;1} \right) \subset \left[ {m - 2;m - 1} \right)}\\{\left( {0;1} \right) \subset \left( {m - 1; + \infty } \right)}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 2}\\{m - 1 \le 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 2}\\{m \le 1}\end{array}} \right.\)
Vậy \(m \in \left( { - \infty ;1} \right] \cup \left\{ 2 \right\}\) là giá trị cần tìm.
Xét sự biến thiên của hàm số\(y = \dfrac{3}{{x - 1}}\) trên khoảng \(\left( {1; + \infty } \right)\)
Với mọi ${x_1},\,{x_2} \in \left( {1; + \infty } \right),\,\,{x_1} > {x_2}$ ta có \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = \dfrac{3}{{{x_2} - 1}} - \dfrac{3}{{{x_1} - 1}} = \dfrac{{3\left( {{x_1} - {x_2}} \right)}}{{\left( {{x_2} - 1} \right)\left( {{x_1} - 1} \right)}}\)
Vì \({x_1} > 1,\,\,{x_2} > 1 \Rightarrow {x_1} - 1 > 0;{x_2} - 1 > 0\)
Mà \({x_1} > {x_2}\) nên \({x_1} - {x_2} > 0\)
Do đó \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right) > 0\) hay \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) < 0\) với \({x_1} > {x_2}\)nên hàm số \(y = \dfrac{3}{{x - 1}}\) nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).
Cho hàm số \(y = m{x^3} - 2({m^2} + 1){x^2} + 2{m^2} - m\). Tìm \(m\) để điểm \(M\left( { - 1;2} \right)\) thuộc đồ thị hàm số đã cho
Điểm \(M\left( { - 1;2} \right)\) thuộc đồ thị hàm số đã cho khi và chỉ khi
\(2 = - m - 2({m^2} + 1) + 2{m^2} - m \Leftrightarrow m = - 2\)
Vậy \(m = - 2\) là giá trị cần tìm.
Cho hàm số \(y = m{x^3} - 2({m^2} + 1){x^2} + 2{m^2} - m\). Tìm các điểm cố định mà đồ thị hàm số đã cho luôn đi qua với mọi \(m\).
Để \(N\left( {x;y} \right)\) là điểm cố định mà đồ thị hàm số đã cho luôn đi qua, điều kiện cần và đủ là \(y = m{x^3} - 2({m^2} + 1){x^2} + 2{m^2} - m,\,\,\forall m\)
\(\begin{array}{l} \Leftrightarrow 2{m^2}\left( {1 - {x^2}} \right) + m\left( {{x^3} - 1} \right) - 2{x^2} - y = 0,\,\,\,\forall m\\ \Leftrightarrow \left\{ \begin{array}{l}1 - {x^2} = 0\\{x^3} - 1\\2{x^2} + y = 0\end{array} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = - 2}\end{array}} \right.\end{array}\)
Vậy đồ thị hàm số đã cho luôn đi qua điểm \(N\left( {1; - 2} \right)\).
Tịnh tiến đồ thị hàm số \(y = {x^2} + 1\) liên tiếp sang phải $2$ đơn vị và lên trên $1$ đơn vị ta được đồ thị của hàm số nào?
Ta tịnh tiến đồ thị hàm số \(y = {x^2} + 1\) sang phải $2$ đơn vị ta được đồ thị hàm số \(y = {\left( {x - 2} \right)^2}+1\) rồi tịnh tiến lên trên $1$ đơn vị ta được đồ thị hàm số \(y = {\left( {x - 2} \right)^2}+1+1\) hay \(y = {x^2} - 4x + 6\).
Vậy hàm số cần tìm là \(y = {x^2} - 4x + 6\).
Nêu cách tịnh tiến đồ thị hàm số \(y = - 2{x^2}\) để được đồ thị hàm số \(y = - 2{x^2} - 6x + 3\).
Ta có \( - 2{x^2} - 6x + 3 = - 2{\left( {x + \dfrac{3}{2}} \right)^2} + \dfrac{{15}}{2}\)
Do đó tịnh tiến đồ thị hàm số \(y = - 2{x^2}\) để được đồ thị hàm số \(y = - 2{x^2} - 6x + 3\) ta làm như sau
Tịnh tiến liên tiếp đồ thị hàm số \(y = - 2{x^2}\) đi sang bên trái \(\dfrac{3}{2}\) đơn vị và lên trên đi \(\dfrac{{15}}{2}\) đơn vị.
Xác định parabol \(\left( P \right)\): \(y = a{x^2} + bx + c\), \(a \ne 0\) biết \(\left( P \right)\) đi qua \(A(2;3)\) có đỉnh \(I(1;2)\)
Vì \(A \in \left( P \right)\) nên \(3 = 4a + 2b + c\) (1).
Mặt khác \(\left( P \right)\) có đỉnh \(I(1;2)\) nên \( - \dfrac{b}{{2a}} = 1 \Leftrightarrow 2a + b = 0\) (2) và \(I \in \left( P \right)\) suy ra \(2 = a + b + c\) (3)
Từ (1), (2) và (3) ta có \(\left\{ \begin{array}{l}4a + 2b + c = 3\\2a + b = 0\\a + b + c = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\\c = 3\end{array} \right.\)
Vậy \(\left( P \right)\) cần tìm là $y = {x^2} - 2x + 3$.
Xác định parabol \(\left( P \right)\): \(y = a{x^2} + bx + c\), \(a \ne 0\) biết \(c = 2\) và \(\left( P \right)\) đi qua \(B\left( {3; - 4} \right)\) và có trục đối xứng là $x = - \dfrac{3}{2}$.
Ta có \(c = 2\) và \(\left( P \right)\) đi qua \(B\left( {3; - 4} \right)\) nên \( - 4 = 9a + 3b + 2 \Leftrightarrow 3a + b = - 2\) (*)
\(\left( P \right)\) có trục đối xứng là $x = - \dfrac{3}{2}$ nên \( - \dfrac{b}{{2a}} = - \dfrac{3}{2} \Leftrightarrow b = 3a\) thay vào (*) ta được \(3a + 3a = - 2 \Leftrightarrow a = - \dfrac{1}{3} \Rightarrow b = - 1\) .
Vậy \(\left( P \right)\) cần tìm là $y = - \dfrac{1}{3}{x^2} - x + 2$.
Xác định parabol \(\left( P \right)\): \(y = a{x^2} + bx + c\), \(a \ne 0\) biết hàm số có giá trị nhỏ nhất bằng \(\dfrac{3}{4}\) khi \(x = \dfrac{1}{2}\) và nhận giá trị bằng \(1\) khi $x = 1$.
Hàm số \(y = a{x^2} + bx + c\) có giá trị nhỏ nhất bằng \(\dfrac{3}{4}\) khi \(x = \dfrac{1}{2}\) nên ta có
\( - \dfrac{b}{{2a}} = \dfrac{1}{2} \Leftrightarrow a + b = 0\) (5)
\(\dfrac{3}{4} = a{\left( {\dfrac{1}{2}} \right)^2} + b\left( {\dfrac{1}{2}} \right) + c \) \(\Leftrightarrow a + 2b + 4c = 3\) (6) và $a > 0$
Hàm số \(y = a{x^2} + bx + c\) nhận giá trị bằng \(1\) khi $x = 1$ nên \(a + b + c = 1\)(7)
Từ (5), (6) và (7) ta có \(\left\{ \begin{array}{l}a + b = 0\\a + 2b + 4c = 3\\a + b + c = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 1\\c = 1\end{array} \right.\)
Vậy phương trình \(\left( P \right)\) cần tìm là $y = {x^2} - x + 1$.
Tìm parabol $y = a{x^2} + 3x - 2$ , biết rằng parabol đó cắt trục $Ox$ tại điểm có hoành độ bằng $2$
Parabol cắt \(Ox\) tại điểm có hoành độ bằng \(2\) suy ra \(\left\{ \begin{array}{l}x = 2\\y = 0\end{array} \right.\)
Ta có: \(0 = a{.2^2} + 3.2 - 2 \Leftrightarrow a = - 1\)
Vậy parabol \(y = - {x^2} + 3x - 2\)
Cho hàm số \(y = {x^2} - 6x + 8\). Sử dụng đồ thị để tìm số điểm chung của đường thẳng \(y = m\left( { - 1 < m < 0} \right)\) và đồ thị hàm số trên.
Ta có \( - \dfrac{b}{{2a}} = 3,\,\, - \dfrac{\Delta }{{4a}} = - 1\)
Bảng biến thiên
Suy ra đồ thị hàm số \(y = {x^2} - 6x + 8\) có đỉnh là \(I\left( {3; - 1} \right)\), đi qua các điểm \(A\left( {2;0} \right),\,\,B\left( {4;0} \right)\)
Nhận đường thẳng $x = 3$ làm trục đối xứng và hướng bề lõm lên trên.
Đường thẳng \(y = m\left( { - 1 < m < 0} \right)\) song song với trục hoành nên ta thấy đường thẳng cắt đồ thị tại \(2\) điểm phân biệt.
Cho hàm số \(y = - {x^2} - 2x + 3\). Hãy tìm giá trị nhỏ nhất của hàm số đã cho trên \(\left[ { - 3;1} \right]\).
Ta có \( - \dfrac{b}{{2a}} = - 1,\,\, - \dfrac{\Delta }{{4a}} = 4\)
Bảng biến thiên
Suy ra đồ thị hàm số \(y = - {x^2} - 2x + 3\) có đỉnh là \(I\left( { - 1;4} \right)\), đi qua các điểm \(A\left( {1;0} \right),\,\,B\left( { - 3;0} \right)\)
Nhận đường thẳng $x = - 1$ làm trục đối xứng và hướng bề lõm xuống dưới.
Trên đoạn \(\left[ { - 3;1} \right]\)thì hàm số đạt GTNN \(y = 0\)
Cho phương trình ${x^2} + 2\left( {m + 3} \right)x + {m^2} - 3 = 0$, $m$ là tham số.
Tìm \(m\) để phương trình có hai nghiệm ${x_1},{x_2}$ và $P = 5({x_1} + {x_2}) - 2{x_1}{x_2}$ đạt giá trị lớn nhất.
Ta có \(\Delta ' = {\left( {m + 3} \right)^2} - \left( {{m^2} - 3} \right) = 6m + 12\)
Phương trình có nghiệm \( \Leftrightarrow \Delta ' \ge 0 \Leftrightarrow 6m + 12 \ge 0 \Leftrightarrow m \ge - 2\)
Theo định lý Viét ta có \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = - 2\left( {m + 3} \right)}\\{{x_1}{x_2} = {m^2} - 3}\end{array}} \right.\)
\(P = - 10\left( {m + 3} \right) - 2\left( {{m^2} - 3} \right) = - 2{m^2} - 10m - 24\)
Xét hàm số \(y = - 2{x^2} - 10x - 24\) với $x \in \left[ { - 2; + \infty } \right)$
Bảng biến thiên
Suy ra \(\mathop {max}\limits_{\left[ { - 2; + \infty } \right)} y = - 12\) khi và chỉ khi $x = - 2$
Vậy \(m = - 2\) là giá trị cần tìm.
Xét sự biến thiên của hàm số \(y = \sqrt {4x + 5} + \sqrt {x - 1} \) trên tập xác định của nó. Áp dụng tìm số nghiệm của phương trình \(\sqrt {4x + 5} + \sqrt {x - 1} = 3\)
ĐKXĐ: \(\left\{ {\begin{array}{*{20}{c}}{4x + 5 \ge 0}\\{x - 1 \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge - \dfrac{5}{4}}\\{x \ge 1}\end{array}} \right. \Leftrightarrow x \ge 1\)
Suy ra TXĐ: ${\rm{D}} = \left[ {1; + \infty } \right)$
Với mọi ${x_1},\,{x_2} \in \left[ {1; + \infty } \right),\,\,{x_1} \ne {x_2}$ ta có
\(\begin{array}{l}f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = \sqrt {4{x_2} + 5} + \sqrt {{x_2} - 1} - \sqrt {4{x_1} + 5} - \sqrt {{x_1} - 1} \\ = \dfrac{{4\left( {{x_2} - {x_1}} \right)}}{{\sqrt {4{x_2} + 5} + \sqrt {4{x_1} + 5} }} + \dfrac{{{x_2} - {x_1}}}{{\sqrt {{x_2} - 1} + \sqrt {{x_1} - 1} }}\\ = \left( {{x_2} - {x_1}} \right)\left( {\dfrac{4}{{\sqrt {4{x_2} + 5} + \sqrt {4{x_1} + 5} }} + \dfrac{1}{{\sqrt {{x_2} - 1} + \sqrt {{x_1} - 1} }}} \right)\end{array}\)
Suy ra \(\dfrac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} = \dfrac{4}{{\sqrt {4{x_2} + 5} + \sqrt {4{x_1} + 5} }} + \dfrac{1}{{\sqrt {{x_2} - 1} + \sqrt {{x_1} - 1} }} > 0\)
Nên hàm số \(y = \sqrt {4x + 5} + \sqrt {x - 1} \) đồng biến trên khoảng $\left[ {1; + \infty } \right)$.
Vì hàm số đã cho đồng biến trên $\left[ {1; + \infty } \right)$ nên
Nếu \(x > 1 \Rightarrow f\left( x \right) > f\left( 1 \right)\) hay \(\sqrt {4x + 5} + \sqrt {x - 1} > 3\)
Suy ra phương trình \(\sqrt {4x + 5} + \sqrt {x - 1} = 3\) vô nghiệm
Nếu $x < 1 \Rightarrow f\left( x \right) < f\left( 1 \right)$ hay \(\sqrt {4x + 5} + \sqrt {x - 1} < 3\)
Suy ra phương trình \(\sqrt {4x + 5} + \sqrt {x - 1} = 3\) vô nghiệm
Với \(x = 1\) dễ thấy nó là nghiệm của phương trình đã cho
Vậy phương trình có nghiệm duy nhất $x = 1$.
Xét sự biến thiên của hàm số \(y = \sqrt {4x + 5} + \sqrt {x - 1} \) trên tập xác định của nó. Áp dụng tìm số nghiệm của phương trình \(\sqrt {4x + 5} + \sqrt {x - 1} = \sqrt {4{x^2} + 9} + x\)
ĐKXĐ: \(\left\{ {\begin{array}{*{20}{c}}{4x + 5 \ge 0}\\{x - 1 \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge - \dfrac{5}{4}}\\{x \ge 1}\end{array}} \right. \Leftrightarrow x \ge 1\)
Suy ra TXĐ: ${\rm{D}} = \left[ {1; + \infty } \right)$
Với mọi ${x_1},\,{x_2} \in \left[ {1; + \infty } \right),\,\,{x_1} \ne {x_2}$ ta có
\(\begin{array}{l}f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = \sqrt {4{x_2} + 5} + \sqrt {{x_2} - 1} - \sqrt {4{x_1} + 5} - \sqrt {{x_1} - 1} \\ = \dfrac{{4\left( {{x_2} - {x_1}} \right)}}{{\sqrt {4{x_2} + 5} + \sqrt {4{x_1} + 5} }} + \dfrac{{{x_2} - {x_1}}}{{\sqrt {{x_2} - 1} + \sqrt {{x_1} - 1} }}\\ = \left( {{x_2} - {x_1}} \right)\left( {\dfrac{4}{{\sqrt {4{x_2} + 5} + \sqrt {4{x_1} + 5} }} + \dfrac{1}{{\sqrt {{x_2} - 1} + \sqrt {{x_1} - 1} }}} \right)\end{array}\)
Suy ra \(\dfrac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} = \dfrac{4}{{\sqrt {4{x_2} + 5} + \sqrt {4{x_1} + 5} }} + \dfrac{1}{{\sqrt {{x_2} - 1} + \sqrt {{x_1} - 1} }} > 0\)
Nên hàm số \(y = \sqrt {4x + 5} + \sqrt {x - 1} \) đồng biến trên khoảng $\left[ {1; + \infty } \right)$.
Xét phương trình đã cho:
Đặt ${x^2} + 1 = t,\,\,t \ge 1 \Rightarrow {x^2} = t - 1$ phương trình trở thành
\(\sqrt {4x + 5} + \sqrt {x - 1} = \sqrt {4t + 5} + \sqrt {t - 1} \Leftrightarrow f\left( x \right) = f\left( t \right)\)
Nếu \(x > t \Rightarrow f\left( x \right) > f\left( t \right)\) hay \(\sqrt {4x + 5} + \sqrt {x - 1} > \sqrt {4t + 5} + \sqrt {t - 1} \)
Suy ra phương trình đã cho vô nghiệm
Nếu $x < t \Rightarrow f\left( x \right) < f\left( t \right)$ hay \(\sqrt {4x + 5} + \sqrt {x - 1} < \sqrt {4t + 5} + \sqrt {t - 1} \)
Suy ra phương trình đã cho vô nghiệm
Vậy \(f\left( x \right) = f\left( t \right) \Leftrightarrow x = t\) hay ${x^2} + 1 = x \Leftrightarrow {x^2} - x + 1 = 0$ (vô nghiệm)
Vậy phương trình đã cho vô nghiệm.
Tìm trên đồ thị hàm số \(y = - {x^3} + {x^2} + 3x - 4\) hai điểm đối xứng nhau qua gốc tọa độ.
Gọi \(M,N\) đối xứng nhau qua gốc tọa độ \(O\). \(M\left( {{x_0};{y_0}} \right) \Rightarrow N\left( { - {x_0}; - {y_0}} \right)\)
Vì $M,{\rm{ }}N$ thuộc đồ thị hàm số nên \(\left\{ {\begin{array}{*{20}{c}}{{y_0} = - x_0^3 + x_0^2 + 3{x_0} - 4}\\{ - {y_0} = x_0^3 + x_0^2 - 3{x_0} - 4}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y_0} = - x_0^3 + x_0^2 + 3{x_0} - 4}\\{2x_0^2 - 8 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y_0} = - x_0^3 + x_0^2 + 3{x_0} - 4}\\{{x_0} = \pm 2}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_0} = 2}\\{{y_0} = - 2}\end{array}} \right.\) hoặc \(\left\{ {\begin{array}{*{20}{c}}{{x_0} = - 2}\\{{y_0} = 2}\end{array}} \right.\)
Vậy hai điểm cần tìm có tọa độ là \(\left( {2; - 2} \right)\) và \(\left( { - 2;2} \right)\).
Xác định parabol \(\left( P \right)\): \(y = a{x^2} + bx + c\), \(a \ne 0\) đỉnh \(I\) biết \(\left( P \right)\) đi qua \(M(4;3)\) cắt \(Ox\) tại \(N(3;0)\) và \(P\) sao cho \(\Delta INP\) có diện tích bằng $1$, biết hoành độ điểm \(P\) nhỏ hơn \(3\).
Vì \(\left( P \right)\) đi qua \(M(4;3)\) nên \(3 = 16a + 4b + c\) (1)
Mặt khác \(\left( P \right)\) cắt \(Ox\) tại \(N(3;0)\) suy ra \(0 = 9a + 3b + c\) (2), \(\left( P \right)\) cắt \(Ox\) tại \(P\) nên \(P\left( {t;0} \right),\,\,t < 3\)
Theo định lý Viét ta có \(\left\{ {\begin{array}{*{20}{c}}{t + 3 = - \dfrac{b}{a}}\\{3t = \dfrac{c}{a}}\end{array}} \right.\)
Ta có \({S_{\Delta IPN}} = \dfrac{1}{2}IH.NP\) với \(H\) là hình chiếu của \(I\left( { - \dfrac{b}{{2a}}; - \dfrac{\Delta }{{4a}}} \right)\) lên $PN$ hay trục hoành
Do \(IH = \left| { - \dfrac{\Delta }{{4a}}} \right|\), \(NP = 3 - t\) nên \({S_{\Delta INP}} = 1 \Leftrightarrow \dfrac{1}{2}\left| { - \dfrac{\Delta }{{4a}}} \right|.\left( {3 - t} \right) = 1\)
\( \Leftrightarrow \left( {3 - t} \right)\left| {{{\left( {\dfrac{b}{{2a}}} \right)}^2} - \dfrac{c}{a}} \right| = \left| {\dfrac{2}{a}} \right| \Leftrightarrow \left( {3 - t} \right)\left| {{{\dfrac{{\left( {t + 3} \right)}}{4}}^2} - 3t} \right| = \left| {\dfrac{2}{a}} \right| \Leftrightarrow {\left( {3 - t} \right)^3} = \dfrac{8}{{\left| a \right|}}\) (3)
Từ (1) và (2) ta có \(7a + b = 3 \Leftrightarrow b = 3 - 7a\) suy ra \(t + 3 = - \dfrac{{3 - 7a}}{a} \Leftrightarrow \dfrac{1}{a} = \dfrac{{4 - t}}{3}>0\) do $t<3$
Thay vào (3) ta có \({\left( {3 - t} \right)^3} = \dfrac{{8\left( {4 - t} \right)}}{3} \Leftrightarrow 3{t^3} - 27{t^2} + 73t - 49 = 0 \Leftrightarrow t = 1\)
Suy ra $a = 1 \Rightarrow b = - 4 \Rightarrow c = 3$.
Vậy \(\left( P \right)\) cần tìm là $y = {x^2} - 4x + 3$.