Tìm hệ số của ${x^{12}}$ trong khai triển ${\left( {2x - {x^2}} \right)^{10}}.$
Theo khai triển nhị thức Newton, ta có
${\left( {2x - {x^2}} \right)^{10}} = \sum\limits_{k\, = \,0}^{10} {C_{10}^k} .{\left( {2x} \right)^{10\, - \,k}}.{\left( { - \,{x^2}} \right)^k} $ $= \sum\limits_{k\, = \,0}^{10} {C_{10}^k} {.2^{10\, - \,k}}.{\left( { - \,1} \right)^k}.{x^{10\, + \,k}}.$
Hệ số của ${x^{12}}$ ứng với $10+k=12\Leftrightarrow k=2\,\,\xrightarrow{{}}\,\,$Hệ số cần tìm là $C_{10}^2{.2^8}.{\left( { - \,1} \right)^2} = C_{10}^2{.2^8}.$
Tìm số hạng không chứa $x$ trong khai triển ${\left( {{x^2} + \dfrac{2}{x}} \right)^6}.$
Theo khai triển nhị thức Newton, ta có
${\left( {{x^2} + \dfrac{2}{x}} \right)^6} $ $= \sum\limits_{k\, = \,0}^6 {C_6^k} .{\left( {{x^2}} \right)^{6\, - \,k}}.{\left( {\dfrac{2}{x}} \right)^k} $ $= \sum\limits_{k\, = \,0}^6 {C_6^k} .{x^{12 - 2k}}.\dfrac{{{2^k}}}{{{x^k}}} $ $= \sum\limits_{k\, = \,0}^6 {C_6^k} {.2^k}.{x^{12\, - \,3k}}.$
Số hạng không chứa $x$ ứng với $12-3k=0\Leftrightarrow k=4\,\,\xrightarrow{{}}\,\,$Số hạng cần tìm là $C_6^4{.2^4}.$
Cho $x$ là số thực dương. Khai triển nhị thức Newton của biểu thức ${\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}$ ta có hệ số của số hạng chứa ${x^m}$ bằng $495.$ Tìm tất cả các giá trị của tham số $m.$
Theo khai triển nhị thức Newton, ta có
${\left( {{x^2} + \dfrac{1}{x}} \right)^{12}} = \sum\limits_{k\, = \,0}^{12} {C_{12}^k} .{\left( {{x^2}} \right)^{12\, - \,k}}.{\left( {\dfrac{1}{x}} \right)^k} = \sum\limits_{k\, = \,0}^{12} {C_{12}^k} .{x^{24\, - \,2k}}.{x^{ - \,k}} = \sum\limits_{k\, = \,0}^{12} {C_{12}^k} .{x^{24\, - \,3k}}.$
Hệ số của số hạng chứa ${x^m}$ ứng với $\left\{ \begin{array}{l}C_{12}^k = 495\\24 - 3k = m\end{array} \right. \Leftrightarrow \dfrac{{12!}}{{\left( {12 - k} \right)!.k!}} = 495 \Rightarrow \left[ \begin{array}{l}k = 4 \Rightarrow m = 12\\k = 8 \Rightarrow m = 0\end{array} \right..$
Cách bấm máy tính giải phương tình ẩn k: Bấm như sau từ 1 đến 12, những số cho đáp án là 495 là nghiệm k cần tìm.
Hệ số của \({x^8}\) trong khai triển biểu thức \({x^2}{\left( {1 + 2x} \right)^{10}} - {x^4}{\left( {3 + x} \right)^8}\) thành đa thức bằng
$ \bullet $ Xét khai triển ${x^2}{\left( {1 + 2x} \right)^{10}} = {x^2}.\sum\limits_{k\, = \,0}^{10} {C_{10}^k} {.1^{10\, - \,k}}.{\left( {2x} \right)^k} = \sum\limits_{k\, = \,0}^{10} {C_{10}^k} {.2^k}.{x^{2\, + \,k}}.$
Hệ số của số hạng chứa ${x^8}$ ứng với ${{x}^{2\,+\,k}}={{x}^{8}}\Leftrightarrow k=6\,\,\xrightarrow{{}}\,\,$Hệ số của ${x^8}$ là ${2^6}.C_{10}^6.$
$ \bullet $ Xét khai triển ${x^4}{\left( {3 + x} \right)^8} = {x^4}.\sum\limits_{i\, = \,0}^8 {C_8^i} {.3^{8\, - \,i}}.{x^i} = \sum\limits_{i\, = \,0}^8 {C_8^i} {.3^{8\, - \,i}}.{x^{i\, + \,4}}.$
Hệ số của số hạng chứa ${x^8}$ ứng với ${{x}^{i\,+\,4}}={{x}^{8}}\Leftrightarrow i=4\,\,\xrightarrow{{}}\,\,$ Hệ số của ${x^8}$ là $C_8^4{.3^4}.$
Vậy hệ số cần tìm là ${2^6}.C_{10}^6 - {3^4}.C_8^4 = 7770.$
Cho khai triển ${\left( {\sqrt {{x^3}} + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^n}$ với $x > 0.$ Biết tổng hệ số của ba số hạng đầu tiên của khai triển là $631.$ Tìm hệ số của số hạng chứa ${x^5}.$
Theo khai triển nhị thức Newton, ta có
${\left( {\sqrt {{x^3}} + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^n} $ $= \sum\limits_{k\, = \,0}^n {C_n^k} .{\left( {\sqrt {{x^3}} } \right)^{n\, - \,k}}.{\left( {\dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^k} $ $= \sum\limits_{k\, = \,0}^n {C_n^k} {.3^k}.{x^{\frac{{3\left( {n\, - \,k} \right)}}{2}}}.{x^{ - \,\frac{{2k}}{3}}} $ $= \sum\limits_{k\, = \,0}^n {C_n^k} {.3^k}.{x^{\frac{{3n}}{2} - \frac{{13k}}{6}}}.$
Suy ra tổng hệ số của 3 số hạng đầu tiên của khai triển là ${3^0}.C_n^0 + {3^1}.C_n^1 + {3^2}.C_n^2 = 631$
$ \Leftrightarrow 1 + 3n + \dfrac{{9n\left( {n - 1} \right)}}{2} = 631 \Rightarrow n = 12.$ Khi đó ${\left( {\sqrt {{x^3}} + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^{12}} = \sum\limits_{k\, = \,0}^{12} {C_{12}^k} {.3^k}.{x^{18\, - \,\frac{{13k}}{6}}}.$
Hệ số của số hạng chứa ${x^5}$ ứng với $18-\dfrac{13k}{6}=5\Leftrightarrow k=6\,\,\xrightarrow{{}}$ Hệ số cần tìm là $C_{12}^6{.3^6}.$
Giá trị của biểu thức \(S = {3^{99}}C_{99}^0 + {3^{98}}.4C_{99}^1 + {3^{97}}{.4^2}C_{99}^2 + ... + {3.4^{98}}C_{99}^{98} + {4^{99}}C_{99}^{99}\)\(\) bằng:
Ta có: \({\left( {a + b} \right)^{99}} = C_{99}^0{a^{99}} + C_{99}^1{a^{98}}b + C_{99}^2{a^{97}}{b^2} + ... + C_{99}^{98}a{b^{98}} + C_{99}^{99}{b^{99}}\)
Thay \(a = 3,b = 4\) ta có:
\(\begin{array}{l}{\left( {3 + 4} \right)^{99}} = C_{99}^0{.3^{99}} + C_{99}^1{.3^{98}}.4 + C_{99}^2{.3^{97}}{.4^2} + ... + C_{99}^{98}{.3.4^{98}} + C_{99}^{99}{.4^{99}}\\ \Leftrightarrow {7^{99}} = {3^{99}}C_{99}^0 + {3^{98}}.4C_{99}^1 + {3^{97}}{.4^2}C_{99}^2 + ... + {3.4^{98}}C_{99}^{98} + {4^{99}}C_{99}^{99}\end{array}\)
Giá trị của biểu thức \(S = {9^{99}}C_{99}^0 + {9^{98}}C_{99}^1 + {9^{97}}C_{99}^2 + ... + 9C_{99}^{98} + C_{99}^{99}\)\(\) bằng:
Ta có: \({\left( {a + b} \right)^{99}} = C_{99}^0{a^{99}} + C_{99}^1{a^{98}}b + C_{99}^2{a^{97}}{b^2} + ... + C_{99}^{98}a{b^{98}} + C_{99}^{99}{b^{99}}\)
Thay \(a = 9,b = 1\) ta có:
\(\begin{array}{l}{\left( {9 + 1} \right)^{99}} = C_{99}^0{.9^{99}} + C_{99}^1{.9^{98}}.1 + C_{99}^2{.9^{97}}{.1^2} + ... + C_{99}^{98}{.9.1^{98}} + C_{99}^{99}{.1^{99}}\\ \Leftrightarrow {10^{99}} = {9^{99}}C_{99}^0 + {9^{98}}C_{99}^1 + {9^{97}}C_{99}^2 + ... + 9C_{99}^{98} + C_{99}^{99}\end{array}\)
Chọn mệnh đề đúng: Với mọi \(n \in {N^*}\) thì:
Với $n = 1$ ta có \({13^1} - 1 = 12 \vdots 12\), ta sử dụng phương pháp quy nạp toán học để chứng minh \({13^n} - 1\) chia hết cho $12$ với mọi \(n \in {N^*}\).
Giả sử khẳng định trên đúng đến $n = k (k \ge 1)$, tức là \(\left( {{{13}^k} - 1} \right) \vdots 12\) ta chứng minh đúng đến $n = k + 1$, tức là \({13^{k + 1}} - 1\) cũng chia hết cho \(12\)
Ta có:
\({13^{k + 1}} - 1 = {13.13^k} - 1 \)\(= {13.13^k} - 13 + 12 \) \(= 13\left( {{{13}^k} - 1} \right) + 12\)
Theo giả thiết quy nạp ta có: \(\left( {{{13}^k} - 1} \right) \vdots 12\) nên \(13\left( {{{13}^k} - 1} \right) + 12 \vdots 12 \Rightarrow \left( {{{13}^{k + 1}} - 1} \right) \vdots 12\)
Vậy \(\left( {{{13}^n} - 1} \right) \vdots 12,\forall n \in {N^*}\).
Cho biểu thức \(S = C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2}\). Khẳng định nào sau đây đúng?
Ta có: \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Thay \(a = 1,b = 1\) ta có:
\(\begin{array}{l}{2^n} = C_n^0 + C_n^1 + C_n^2 + ... + C_n^{n - 1} + C_n^n\\ \Leftrightarrow {2^n} = 1 + n + C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2} + n + 1\\ \Leftrightarrow {2^n} - 2n - 2 = C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2}\end{array}\)
Với mọi số tự nhiên \(n \ge 2\), bất đẳng thức nào sau đây đúng?
Với $n = 2$ ta có: \({3^2} = 9 > 3.2 + 2\)
Ta chứng minh đáp án C đúng bằng phương pháp quy nạp toán học.
Bất đẳng thức đúng với $n = 2$, giả sử bất đẳng thức đúng đến $n = k (k \ge 2)$, tức là \({3^k} > 3k + 2\).
Ta chứng minh bất đẳng thức đúng đến $n = k + 1$, tức là cần phải chứng minh \({3^{k + 1}} > 3\left( {k + 1} \right) + 2 = 3k + 5\)
Ta có: \({3^{k + 1}} = {3.3^k} > 3\left( {3k + 2} \right) \) \(= 9k + 6 > 3k + 5\)
Vậy bất đằng thức đúng với mọi số tự nhiên \(n \ge 2\)
Với mọi số nguyên dương $n$, tổng $2 + 5 + 8 + … + (3n – 1)$ là:
Gọi ${{S}_{n}}=2+5+8+\ldots +\left( 3n-1 \right)$
Với $n = 1$ ta có: \({S_1} = 2\) , ta loại được các đáp án B, C và D.
Ta chứng minh ${{S}_{n}}=2+5+8+\ldots +\left( 3n-1 \right)=\dfrac{n\left( 3n+1 \right)}{2}\,\,\,\left( * \right)$ đúng với mọi số nguyên dương $n$ bằng phương pháp quy nạp toán học.
Giả sử (*) đúng đến $n = k (k \ge 1)$, tức là ${{S}_{k}}=2+5+8+\ldots +\left( 3k-1 \right)=\dfrac{k\left( 3k+1 \right)}{2}$
Ta cần chứng minh (*) đúng đến $n = k + 1$, tức là cần chứng minh ${{S}_{k+1}}=2+5+8+\ldots +\left( 3\left( k+1 \right)-1 \right)=\dfrac{\left( k+1 \right)\left( 3\left( k+1 \right)+1 \right)}{2}=\dfrac{\left( k+1 \right)\left( 3k+4 \right)}{2}$
Ta có: $\begin{align} & {{S}_{k+1}}=2+5+8+\ldots +\left( 3\left( k+1 \right)-1 \right)=2+5+8+\ldots +\left( 3k-1 \right)+\left( 3k+2 \right) \\ & =\dfrac{k\left( 3k+1\right)}{2}+3k+2=\dfrac{3{{k}^{2}}+k+6k+4}{2}=\dfrac{\left( k+1 \right)\left( 3k+4 \right)}{2} \\\end{align}$
Do đó (*) đúng đến $n = k + 1$ .
Vậy ${{S}_{n}}=2+5+8+\ldots +\left( 3n-1\right)=\dfrac{n\left( 3n+1 \right)}{2}$ đúng với mọi số nguyên dương $n$.
Trong các hệ thức sau đây, hệ thức nào sai?
Ta có: \({\left( {a + b} \right)^{2n}} = C_{2n}^0{a^{2n}} + C_{2n}^1{a^{2n - 1}}b + C_{2n}^2{a^{2n - 2}}{b^2} + ... + C_{2n}^{2n - 1}a{b^{2n - 1}} + C_{2n}^{2n}{b^{2n}}\)
Thay \(a = 1,b = - 1\) ta có:
\(\begin{array}{l}0 = C_{2n}^0 - C_{2n}^1 + C_{2n}^2 - C_{2n}^3 + ... + C_{2n}^{2n - 2} - C_{2n}^{2n - 1} + C_{2n}^{2n}\\ \Leftrightarrow C_{2n}^0 + C_{2n}^2 + C_{2n}^4 + C_{2n}^6 + ... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5 + C_{2n}^7 + ... + C_{2n}^{2n - 1}\end{array}\)
Đáp án A đúng.
Ta có: \({\left( {a + b} \right)^{2n + 1}} = C_{2n + 1}^0{a^{2n + 1}} + C_{2n + 1}^1{a^{2n}}b + C_{2n + 1}^2{a^{2n - 1}}{b^2} + ... + C_{2n + 1}^{2n}a{b^{2n}} + C_{2n + 1}^{2n + 1}{b^{2n + 1}}\)
Thay \(a = 1,b = - 1\) ta có:
\(\begin{array}{l}0 = C_{2n + 1}^0 - C_{2n + 1}^1 + C_{2n + 1}^2 - C_{2n + 1}^3 + ... + C_{2n + 1}^{2n - 2} - C_{2n + 1}^{2n - 1} + C_{2n + 1}^{2n} - C_{2n + 1}^{2n + 1}\\ \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^2 + C_{2n + 1}^4 + C_{2n + 1}^6 + ... + C_{2n + 1}^{2n} = C_{2n + 1}^1 + C_{2n + 1}^3 + C_{2n + 1}^5 + C_{2n + 1}^7 + ... + C_{2n + 1}^{2n + 1}\end{array}\)
Đáp án C đúng.
Áp dụng tính chất \(C_n^k = C_n^{n - k}\) ta có:
\(\begin{array}{l}C_{2n + 1}^0 = C_{2n + 1}^{2n + 1}\\C_{2n + 1}^1 = C_{2n + 1}^{2n}\\C_{2n + 1}^2 = C_{2n + 1}^{2n - 1}\\...\\C_{2n + 1}^n = C_{2n + 1}^{n + 1}\end{array}\)
Cộng vế với vế ta có
\(C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + C_{2n + 1}^3 + ... + C_{2n + 1}^n = C_{2n + 1}^{n + 1} + C_{2n + 1}^{n + 2} + C_{2n + 1}^{n + 3} + C_{2n + 1}^{n + 4} + ... + C_{2n + 1}^{2n + 1}\)
Đáp án D đúng.
Áp dụng tính chất \(C_n^k = C_n^{n - k}\) ta có:
\(\begin{array}{l}C_{2n}^0 = C_{2n}^{2n}\\C_{2n}^1 = C_{2n}^{2n - 1}\\C_{2n}^2 = C_{2n}^{2n - 2}\\...\\C_{2n}^{n - 1} = C_{2n}^{n + 1}\end{array}\)
Cộng vế với vế ta có
\(\begin{array}{l}C_{2n}^0 + C_{2n}^1 + C_{2n}^2 + C_{2n}^3 + ... + C_{2n}^{n - 1} = C_{2n}^{n + 1} + C_{2n}^{n + 2} + C_{2n}^{n + 3} + C_{2n}^{n + 4} + ... + C_{2n}^{2n}\\ \Leftrightarrow C_{2n}^0 + C_{2n}^1 + C_{2n}^2 + C_{2n}^3 + ... + C_{2n}^n > C_{2n}^{n + 1} + C_{2n}^{n + 2} + C_{2n}^{n + 3} + C_{2n}^{n + 4} + ... + C_{2n}^{2n}\end{array}\)
Đáp án B sai.
Bất đẳng thức nào sau đây đúng? Với mọi số nguyên dương $n$ thì:
Khi $n = 1$ ta có \(\dfrac{1}{{\sqrt 1 }} = 1 < 2 \Rightarrow \) Loại đáp án A, B, D.
Ta chứng minh đáp án C đúng bằng phương pháp quy nạp toán học.
Bất đẳng thức đúng với $n = 1$ .
Giả sử bất đẳng thức đúng đến $n = k (k \ge 1)$, tức là
\(1 + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt k }} < 2\sqrt k \) , ta chứng minh bất đẳng thức đúng đến $n = k + 1$ , tức là cần chứng minh \(1 + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt {k + 1} }} < 2\sqrt {k + 1} \)
Ta có: \(VT = 1 + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt k }} + \dfrac{1}{{\sqrt {k + 1} }} < 2\sqrt k + \dfrac{1}{{\sqrt {k + 1} }}\)
Giả sử:
$2\sqrt k + \dfrac{1}{{\sqrt {k + 1} }} < 2\sqrt {k + 1} $ $\Leftrightarrow \dfrac{1}{{\sqrt {k + 1} }} < 2\sqrt {k + 1} - 2\sqrt k = \dfrac{2}{{\sqrt {k + 1} + \sqrt k }}$ $ \Leftrightarrow \sqrt {k + 1} > \dfrac{{\sqrt {k + 1} }}{2} + \dfrac{{\sqrt k }}{2} $ $\Leftrightarrow \dfrac{{\sqrt {k + 1} }}{2} > \dfrac{{\sqrt k }}{2} \Leftrightarrow \sqrt {k + 1} > \sqrt k $ (luôn đúng)
Do đó
\(2\sqrt k + \dfrac{1}{{\sqrt {k + 1} }} < 2\sqrt {k + 1} \) \( \Rightarrow 1 + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt {k + 1} }} < 2\sqrt {k + 1} \)
Do đó bất đẳng thức đúng đến $n = k + 1$.
Vậy \(1 + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt n }} < 2\sqrt n \) đúng với mọi số nguyên dương $n$.
Số nguyên dương \(n\) thỏa mãn \(C_n^0.C_{n + 1}^n + C_n^1.C_{n + 1}^{n - 1} + C_n^2.C_{n + 1}^{n - 2} + ... + C_n^{n - 1}.C_{n + 1}^1 + C_n^n.C_{n + 1}^0 = 1716\) là:
Ta có:
\({\left( {1 + x} \right)^{2n + 1}} = C_{2n + 1}^0 + C_{2n + 1}^1x + C_{2n + 1}^2{x^2} + ... + C_{2n + 1}^{2n}{x^{2n}} + C_{2n + 1}^{2n + 1}{x^{2n + 1}}\)
Mặt khác:
\({\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^{n - 1}{x^{n - 1}} + C_n^n{x^n}\)
\({\left( {1 + x} \right)^{n + 1}} = C_{n + 1}^0 + C_{n + 1}^1x + C_{n + 1}^2{x^2} + ... + C_{n + 1}^{n - 1}{x^{n - 1}} + C_{n + 1}^n{x^n} + C_{n + 1}^{n + 1}{x^{n + 1}}\)
Suy ra
\({\left( {1 + x} \right)^n}{\left( {1 + x} \right)^{n + 1}} = \left( {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right) ( {C_{n + 1}^0 + C_{n + 1}^1x + C_{n + 1}^2{x^2} + ... + C_{n + 1}^{n + 1}{x^{n + 1}}} ) \)
Đồng nhất hệ số của \({x^n}\) ta được:
\(C_n^0.C_{n + 1}^n + C_n^1.C_{n + 1}^{n - 1} + C_n^2.C_{n + 1}^{n - 2} + ... + C_n^{n - 1}.C_{n + 1}^1 + C_n^n.C_{n + 1}^0 = C_{2n + 1}^n\)
Với \(n = 9\) ta có: \(C_{2n + 1}^n = C_{19}^9 = 92378\)
Với \(n = 8\) ta có: \(C_{2n + 1}^n = C_{17}^8 = 24310\)
Với \(n = 7\) ta có: \(C_{2n + 1}^n = C_{15}^7 = 6435\)
Với \(n = 6\) ta có: \(C_{2n + 1}^n = C_{13}^6 = 1716\)