Đường conic có phương trình: \(\dfrac{{{x^2}}}{{100}} + \dfrac{{{y^2}}}{{64}} = 1\) là đường:
Hypebol
Hypebol
Hypebol
Đường conic có phương trình: \(\dfrac{{{x^2}}}{{100}} + \dfrac{{{y^2}}}{{64}} = 1\) là đường hypebol.
Quỹ đạo của Mặt trăng có tâm sai bằng 0,0549 là đường:
A.Elip
A.Elip
A.Elip
Vì quỹ đạo của Mặt Trăng có tâm sai nhỏ hơn 1 nên là đường elip.
Điền dấu “>;<;=”
Parabol là đường conic có tâm sai e
1
Parabol là đường conic có tâm sai e
1
Parabol là đường conic có tâm sai e =1
Điền dấu “>;<;=”
Hybebol là đường conic có tâm sai e
1
Hybebol là đường conic có tâm sai e
1
Hybebol là đường conic có tâm sai e >1
Cho elip $(E)$ có phương trình chính tắc là \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\). Gọi \(2c\) là tiêu cự của $(E).$ Trong các mệnh đề sau, mệnh đề nào đúng?
Theo lý thuyết phương trình chính tắc của elip có \({a^2} = {b^2} + {c^2}\)
Cho hypebol $(H):\,\dfrac{{{x^2}}}{{16}} - \dfrac{{{y^2}}}{9} = 1$, xác định tọa độ các đỉnh của $(H)$:
$\left( H \right)\,\,:\,\dfrac{{{x^2}}}{{16}} - \dfrac{{{y^2}}}{9} = 1 \Rightarrow a = 4,\,\,b = 3$
Tọa độ các đỉnh của $(H)$ là: ${A_1}\left( { - 4;0} \right);\,\,{A_2}\left( {4;0} \right);\,\,{B_1}\left( {0; - 3} \right);\,\,{B_2}\left( {0;3} \right)$
Cho parabol có phương trình \({y^2}\; = {\rm{ }}8x.\)
Tìm toạ độ tiêu điểm của parabol.
Có $2p=8 ⇒ p=4$ ⇒ Toạ độ tiêu điểm là F(2; 0).
Cho parabol có phương trình \({y^2}\; = {\rm{ }}8x.\)
Tìm phương trình đường chuẩn của parabol.
Có 2p = 8 ⇒ p = 4 ⇒ Phương trình đường chuẩn của parabol là x = –2.
Cho parabol có phương trình \({y^2}\; = {\rm{ }}8x.\)
Tính bán kính qua tiêu của điểm M thuộc parabol biết điểm M có tung độ bằng 4.
Giả sử M có toạ độ là (x; 4). Khi đó ta có \({4^2}\; = 8x \Rightarrow \;x = 2.\)
Vậy M(2; 4).
Suy ra bán kính qua tiêu của điểm M là \(MF = x + \;\dfrac{p}{2} = 2 + \dfrac{4}{2} = 4.\)
Hypebol $(H):\,\,25{x^2} - 16{y^2} = 400$ có tiêu cự bằng:
$(H):\,\,25{x^2} - 16{y^2} = 400 \Leftrightarrow \dfrac{{{x^2}}}{{16}} - \dfrac{{{y^2}}}{{25}} = 1 \Rightarrow a = 4,\,\,b = 5$
Mà ${a^2} + {b^2} = {c^2} \Leftrightarrow {c^2} = {4^2} + {5^2} = 41 \Rightarrow c = \sqrt {41} $
$ \Rightarrow $ Tiêu cự ${F_1}{F_2} = 2c = 2\sqrt {41} $.
Elip $(E)$ có độ dài trục bé bằng tiêu cự. Tâm sai của $(E)$ là:
Elip có độ dài trục bé bằng tiêu cự nên ta có \(b = c\)
Mặt khác ta có \({a^2} = {b^2} + {c^2}\) , suy ra \({a^2} = 2{c^2}\) hay \(a = \sqrt 2 c\)
Tâm sai của elip là: \(e = \dfrac{c}{a} = \dfrac{c}{{\sqrt 2 c}} = \dfrac{1}{{\sqrt 2 }}\)
Hypebol $(H):\,\,9{x^2} - 16{y^2} = 144$ có tâm sai:
$(H):\,\,9{x^2} - 16{y^2} = 144 \Leftrightarrow \dfrac{{{x^2}}}{{16}} - \dfrac{{{y^2}}}{9} = 1 \Rightarrow a = 4,\,\,b = 3$
Mà ${a^2} + {b^2} = {c^2} \Leftrightarrow {c^2} = {4^2} + {3^2} = 25 \Rightarrow c = 5$
Tâm sai $e = \dfrac{c}{a} = \dfrac{5}{4}$.
Elip có độ dài trục lớn là $12,$ độ dài trục nhỏ là $8$ có phương trình chính tắc là:
Độ dài trục lớn là $12,$ suy ra \(2a = 12\) hay \(a = 6\)
Độ dài trục nhỏ là $8,$ suy ra \(2b = 8\) hay \(b = 4\)
Vậy elip cần tìm là \(\dfrac{{{x^2}}}{{36}} + \dfrac{{{y^2}}}{{16}} = 1\)
Tính bán kính qua tiêu của điểm trên parabol sau: Điểm \(M\left( {3;-6} \right)\) trên \(\left( P \right):{y^2}\; = 12x\)
Bán kính qua tiêu là:
Bán kính qua tiêu là:
Có 2p = 12, suy ra p = 6.
Bán kính qua tiêu của M là: \(FM\; = x + \;\dfrac{p}{2} = 3 + \;\dfrac{6}{2} = {\rm{ }}6.\)
Lập phương trình chính tắc của hypebol $(H)$ biết $(H)$ có tiêu cự bằng $16$ và tâm sai $e = \dfrac{4}{3}$.
$(H)$ có tiêu cự bằng $16$ và tâm sai $e = \dfrac{4}{3}$ $ \Rightarrow c = 8,\,\,e = \dfrac{c}{a} = \dfrac{4}{3} $ $\Rightarrow a = \dfrac{3}{4}c = \dfrac{3}{4}.8 = 6$
Mà ${a^2} + {b^2} = {c^2} \Leftrightarrow {6^2} + {b^2} = {8^2} \Rightarrow {b^2} = 28$
Phương trình chính tắc của $(H):$ $\dfrac{{{x^2}}}{{36}} - \dfrac{{{y^2}}}{{28}} = 1$
Phương trình chính tắc của elip có hai đỉnh là \(A(5;0)\) và \(B(0;3)\) là:
Elip có hai đỉnh là \(A(5;0)\) và \(B(0;3)\) suy ra \(a = 5\) và \(b = 3\). Do đó, phương trình chính tắc của elip là: \(\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\)
Phương trình chính tắc của elip có một đỉnh là \(B(0; - 2)\), tiêu cự là \(2\sqrt 5 \) là:
Elip có một đỉnh là \(B(0; - 2)\) suy ra \(b = 2\).
Elip có tiêu cự là \(2\sqrt 5 \) suy ra \(c = 2\sqrt 5 \Leftrightarrow c = \sqrt 5 \)
Mặt khác ta có \({a^2} = {b^2} + {c^2} = 4 + 5 = 9\)
Vậy elip có dạng \(\dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{4} = 1\)
Phương trình chính tắc của elip có đỉnh là \(A(2;0)\) và đi qua \(M( - 1;\dfrac{{\sqrt 3 }}{2})\) là:
Elip có đỉnh là \(A(2;0)\) suy ra \(a = 2\). Phương trình elip cần tìm có dạng \(\dfrac{{{x^2}}}{4} + \dfrac{{{y^2}}}{{{b^2}}} = 1\)
Vì elip qua \(M( - 1;\dfrac{{\sqrt 3 }}{2})\) nên ta có \(\dfrac{1}{4} + \dfrac{3}{{4{b^2}}} = 1 \Leftrightarrow {b^2} = 1\)
Vậy elip có phương trình là \(\dfrac{{{x^2}}}{4} + \dfrac{{{y^2}}}{1} = 1\)