Từ thành phố \(A\) đến thành phố $B$ có $6$ con đường, từ thành phố $B$ đến thành phố $C$ có $7$ con đường. Có bao nhiêu cách đi từ thành phố $A$ đến thành phố $C$ , biết phải đi qua thành phố $B$ .
Để đi từ thành phố $A$ đến thành phố $B$ ta có $6$ con đường để đi. Với mỗi cách đi từ thành phố $A$ đến thành phố $B$ ta có $7$ cách đi từ thành phố $B$ đến thành phố $C.$
Vậy có \(6.7 = 42\) cách đi từ thành phố A đến B.
Từ các số $0,1,2,3,4,5$ có thể lập được bao nhiêu số tự nhiên mà mỗi số có $6$ chữ số khác nhau và chữ số $2$ đứng cạnh chữ số $3?$
Đặt \(y = 23\), xét các số \(x = \overline {abcde} \) trong đó \(a,b,c,d,e\) đôi một khác nhau và thuộc tập \(\left\{ {0,1,y,4,5} \right\}\). Có \({P_5} - {P_4} = 96\) số như vậy
Khi ta hoán vị \(2,3\) trong \(y\) ta được hai số khác nhau
Nên có \(96.2 = 192\) số thỏa yêu cầu bài toán.
Có bao nhiêu số chẵn gồm $4$ chữ số đôi một khác nhau được lập từ các số $0,1,2,4,5,6,8$
Gọi \(x = \overline {abcd} ;{\rm{ }}a,b,c,d \in \left\{ {0,1,2,4,5,6,8} \right\}\).
Vì \(x\) là số chẵn nên \(d \in \left\{ {0,2,4,6,8} \right\}\).
TH 1: \(d = 0 \Rightarrow \) có $1$ cách chọn \(d\).
Với mỗi cách chọn \(d\) ta có $6$ cách chọn \(a \in \left\{ {1,2,4,5,6,8} \right\}\)
Với mỗi cách chọn \(a,d\) ta có $5$ cách chọn \(b \in \left\{ {1,2,4,5,6,8} \right\}\backslash \left\{ a \right\}\)
Với mỗi cách chọn \(a,b,d\) ta có \(4\) cách chọn \(c \in \left\{ {1,2,4,5,6,8} \right\}\backslash \left\{ {a,b} \right\}\)
Suy ra trong trường hợp này có \(1.6.5.4 = 120\) số.
TH 2: \(d \ne 0 \Rightarrow d \in \left\{ {2,4,6,8} \right\} \Rightarrow \) có $4$ cách chọn $d$
Với mỗi cách chọn \(d\), do \(a \ne 0\) nên ta có $5$ cách chọn
\(a \in \left\{ {1,2,4,5,6,8} \right\}\backslash \left\{ d \right\}\).
Với mỗi cách chọn \(a,d\) ta có $5$ cách chọn \(b \in \left\{ {0,1,2,4,5,6,8} \right\}\backslash \left\{ a,d \right\}\)
Với mỗi cách chọn \(a,b,d\) ta có \(4\) cách chọn \(c \in \left\{ {0,1,2,4,5,6,8} \right\}\backslash \left\{ {a,b,d} \right\}\)
Suy ra trong trường hợp này có $4.5.5.4 = 400$ số.
Vậy có tất cả \(120 + 400 = 520\) số cần lập.
Cho \(C_n^{n - 3} = 1140\). Tính \(A = \dfrac{{A_n^6 + A_n^5}}{{A_n^4}}\)
ĐK: \(\left\{ \begin{array}{l}n \in \mathbb{N}\\n \ge 6\end{array} \right.\)
Ta có: \(C_n^{n - 3} = 1140 \Leftrightarrow \dfrac{{n!}}{{3!(n - 3)!}} = 1140 \Leftrightarrow n = 20\)
Khi đó: \(A = \dfrac{{A_{20}^6 + A_{20}^5}}{{A_{20}^4}}=256\)
Tính \(M = \dfrac{{A_{n + 1}^4 + 3A_n^3}}{{\left( {n + 1} \right)!}}\), biết \(C_{n + 1}^2 + 2C_{n + 2}^2 + 2C_{n + 3}^2 + C_{n + 4}^2 = 149\).
Điều kiện: \(\left\{ \begin{array}{l}n \in \mathbb{N}\\n \ge 3\end{array} \right.\)
Ta có: \(C_{n + 1}^2 + 2C_{n + 2}^2 + 2C_{n + 3}^2 + C_{n + 4}^2 = 149\)
\( \Leftrightarrow \dfrac{{\left( {n + 1} \right)!}}{{2!\left( {n - 1} \right)!}} + 2\dfrac{{\left( {n + 2} \right)!}}{{2!n!}} + 2\dfrac{{\left( {n + 3} \right)!}}{{2!\left( {n + 1} \right)!}} + \dfrac{{\left( {n + 4} \right)!}}{{2!\left( {n + 2} \right)!}} = 149\)
\( \Leftrightarrow \dfrac{{\left( {n + 1} \right)n}}{2} + \dfrac{{2\left( {n + 2} \right)\left( {n + 1} \right)}}{2}\)\( + \dfrac{{2\left( {n + 3} \right)\left( {n + 2} \right)}}{2} + \dfrac{{\left( {n + 4} \right)\left( {n + 3} \right)}}{2} = 149\)
\( \Leftrightarrow {n^2} + n + 2\left( {{n^2} + 3n + 2} \right)\)\( + 2\left( {{n^2} + 5n + 6} \right) + {n^2} + 7n + 12 = 298\)
\( \Leftrightarrow 6{n^2} + 24n - 270 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 5\left( {TM} \right)\\n = - 9\left( L \right)\end{array} \right.\)
Do đó: \(M = \dfrac{{A_6^4 + 3A_5^3}}{{6!}} = \dfrac{3}{4}\).
Giải phương trình \({P_x}A_x^2 + 72 = 6(A_x^2 + 2{P_x})\) ta được nghiệm:
Điều kiện: \(\left\{ \begin{array}{l}x \in \mathbb{N}\\x \ge 2\end{array} \right.\)
Phương trình
$ \Leftrightarrow {P_x}A_x^2 + 72 - 6A_x^2 - 12{P_x} = 0$
\( \Leftrightarrow \left( {{P_x}A_x^2 - 6A_x^2} \right) - \left( {12{P_x} - 72} \right) = 0\)
\( \Leftrightarrow A_x^2\left( {{P_x} - 6} \right) - 12({P_x} - 6) = 0\)
\( \Leftrightarrow ({P_x} - 6)(A_x^2 - 12) = 0 \Leftrightarrow \left[ \begin{array}{l}{P_x} = 6\\A_x^2 = 12\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x! = 6\\x(x - 1) = 12\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 4\end{array} \right.\)
Giải bất phương trình \(C_{n + 2}^{n - 1} + C_{n + 2}^n > \dfrac{5}{2}A_n^2\) ta được:
Với \(n \ge 2,n \in \mathbb{N}\) ta có:
$C_{n + 2}^{n - 1} + C_{n + 2}^n > \dfrac{5}{2}A_n^2 \Leftrightarrow C_{n + 3}^n > \dfrac{5}{2}A_n^2 \Leftrightarrow \dfrac{{\left( {n + 3} \right)!}}{{n!3!}} > \dfrac{5}{2}\dfrac{{n!}}{{\left( {n - 2} \right)!}}$
\( \Leftrightarrow n\left( {{n^2} - 9n + 26} \right) + 6 > 0\) luôn đúng với mọi \(n \ge 2\).
Vậy nghiệm của bất phương trình \(n \ge 2,n \in \mathbb{N}\).
Giải hệ phương trình \(\left\{ \begin{array}{l}2A_y^x + 5C_y^x = 90\\5A_y^x - 2C_y^x = 80\end{array} \right.\) ta được nghiệm \(\left( {x;y} \right)\). Khi đó giá trị biểu thức \(x - y\) là:
Điều kiện \(x,y \in \mathbb{N};\,x \le y\)
Ta có: \(\left\{ \begin{array}{l}2A_y^x + 5C_y^x = 90\\5A_y^x - 2C_y^x = 80\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}A_y^x = 20\\C_y^x = 10\end{array} \right.\)
Từ \(A_y^x = x!C_y^x\) suy ra \(x! = \dfrac{{20}}{{10}} = 2 \Leftrightarrow x = 2\)
Từ \(A_y^2 = 20 \Leftrightarrow y\left( {y - 1} \right) = 20\)\( \Leftrightarrow {y^2} - y - 20 = 0 \Leftrightarrow \left[ \begin{array}{l}y = - 4\,\,(L)\\y = 5\end{array} \right.\)
Vậy \(x = 2;y = 5\).
Có bao nhiêu số tự nhiên gồm $7$ chữ số, biết rằng chữ số $2$ có mặt hai lần, chữ số $3$ có mặt ba lần và các chữ số còn lại có mặt nhiều nhất một lần?
Gọi số tự nhiên thỏa mãn bài toán có dạng \(\overline {abcdefg} \).
Xét trường hợp có cả chữ số \(0\) đứng đầu.
Số cách chọn vị trí cho chữ số \(2\) là \(C_7^2\).
Số cách chọn vị trí cho chữ số \(3\) là \(C_5^3\).
Số cách chọn \(2\) chữ số còn lại trong tập hợp \(\left\{ {0;1;4;5;6;7;8;9} \right\}\) để xếp vào hai vị trí cuối là \(A_8^2\).
Do đó có \(C_7^2.C_5^3.A_8^2 = 11760\) số.
Xét trường hợp chữ số \(0\) đứng đầu.
\(a = 0\) nên có \(1\) cách chọn.
Số cách chọn vị trí cho chữ số \(2\) là \(C_6^2\).
Số cách chọn vị trí cho chữ số \(3\) là \(C_4^3\).
Số cách chọn chữ số cuối trong tập hợp \(\left\{ {1;4;5;6;7;8;9} \right\}\) là \(7\) cách.
Do đó có \(1.C_6^2.C_4^3.7 = 420\) số.
Vậy có \(11760 - 420 = 11340\) số.
Từ các chữ số $0,1,2,3,4,5,6$ có thể lập được bao nhiêu số chẵn, mỗi số có $5$ chữ số khác nhau trong đó có đúng hai chữ số lẻ và $2$ chữ số lẻ đứng cạnh nhau?
Gọi \(A\) là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số \(0,1,2,3,4,5,6\) số cách chọn được \(A\) là \(A_3^2 = 6\). Số chẵn có $5$ chữ số mà hai số lẻ đứng kề nhau phải chứa \(A\) và ba trong $4$ chữ số $0;2;4;6.$ Gọi \(\overline {abcd} ;a,b,c,d \in \{ A,0,2,4,6\} \) là số thỏa mãn yêu cầu bài toán.
* TH1: Nếu \(a = A\) có $1$ cách chọn \(a\) và \(A_4^3\) cách chọn \(b,c,d\).
* TH2: \(a \ne A\) có $3$ cách chọn \(a\)
+ Nếu \(b = A\) có $1$ cách chọn \(b\) và \(A_3^2\) cách chọn \(c,d\).
+ Nếu \(c = A\) có $1$ cách chọn \(c\) và \(A_3^2\) cách chọn \(b,d\).
Vậy có \(A_3^2\left( {A_4^3 + 3\left( {1.A_3^2 + 1.A_3^2} \right)} \right) = 360\) số thỏa mãn yêu cầu bài toán.
Trong một môn học, Thầy giáo có $30$ câu hỏi khác nhau gồm $5$ câu khó, $10$ câu trung bình và $15$ câu dễ. Từ $30$ câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm $5$ câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ cả $3$ câu (khó, dễ, trung bình) và số câu dễ không ít hơn $2$ ?
Ta có các trường hợp sau
TH 1: Đề thi gồm $2 D, 2 TB, 1 K:$ \(C_{15}^2.C_{10}^2.C_5^1\)
TH 2: Đề thi gồm $2 D, 1 TB, 2 K:$ \(C_{15}^2.C_{10}^1.C_5^2\)
TH 3: Đề thi gồm $3 D, 1 TB, 1 K:$ \(C_{15}^3.C_{10}^1.C_5^1\)
Vậy có: \(C_{15}^2.C_{10}^2.C_5^1+C_{15}^2.C_{10}^1.C_5^2+C_{15}^3.C_{10}^1.C_5^1=56875\) đề kiểm tra.
Tìm hệ số của \({x^5}\) trong khai triển đa thức của: \(x{\left( {1 - 2x} \right)^5} + {x^2}{\left( {1 + 3x} \right)^{10}}\)
Đặt \(f(x) = x{\left( {1 - 2x} \right)^5} + {x^2}{\left( {1 + 3x} \right)^{10}}\)
Ta có : \(f(x) = x\sum\limits_{k = 0}^5 {C_5^k{{\left( { - 2} \right)}^k}.{x^k}} + {x^2}\sum\limits_{i = 0}^{10} {C_{10}^i} {\left( {3x} \right)^i}\) \( = \sum\limits_{k = 0}^5 {C_5^k{{\left( { - 2} \right)}^k}.{x^{k + 1}}} + \sum\limits_{i = 0}^{10} {C_{10}^i} {3^i}.{x^{i + 2}}\)
Vậy hệ số của \({x^5}\) trong khai triển đa thức của \(f(x)\) ứng với \(k = 4\) và \(i = 3\) là: \(C_5^4{\left( { - 2} \right)^4} + C_{10}^3{.3^3} = 3320\)
Tìm hệ số cuả \({x^8}\) trong khai triển đa thức \(f(x) = {\left[ {1 + {x^2}\left( {1 - x} \right)} \right]^8}\)
Ta có:
\({\left[ {1 + {x^2}\left( {1 - x} \right)} \right]^8} = \sum\limits_{n = 0}^8 {C_8^n} {x^{2n}}{\left( {1 - x} \right)^n} \) \(= \sum\limits_{n = 0}^8 {C_8^n} \sum\limits_{k = 0}^n {C_n^k{{\left( { - 1} \right)}^k}{x^{2n +k }}} \)
với \(0 \le k \le n \le 8\).
Số hạng chứa \({x^8}\) ứng với \(2n + k = 8 \Rightarrow k = 8 - 2n\) là một số chẵn.
Thử trực tiếp ta được \(k = 0;n = 4\) và \(k = 2,\,n = 3\).
Vậy hệ số của \({x^8}\) là \(C_8^3.C_3^2 + \,\,C_8^4.C_4^0 = 238\).
Đa thức \(P\left( x \right) = {\left( {1 + 3x + 2{x^2}} \right)^{10}} = {a_0} + {a_1}x + ... + {a_{20}}{x^{20}}\). Tìm \({a_{15}}\)
Ta có: $P\left( x \right) = {\left( {1 + 3x + 2{x^2}} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k} {\left( {3x + 2{x^2}} \right)^k}$ $ = \sum\limits_{k = 0}^{10} {C_{10}^k} \sum\limits_{i = 0}^k {C_k^i} {(3x)^{k - i}}.{(2{x^2})^i} $ $= \sum\limits_{k = 0}^{10} {C_{10}^k} \sum\limits_{i = 0}^k {C_k^i} {.3^{k - i}}{.2^i}{x^{k + i}}$
với \(0 \le i \le k \le 10\,\,\).
Do đó \(k + i = 15\) với các trường hợp
\(k = 10,i = 5\) hoặc \(k = 9,i = 6\) hoặc \(k = 8,i = 7\)
Vậy \({a_{15}} = C_{10}^{10}.C_{10}^5{.3^5}{.2^5} + C_{10}^9.C_9^6{.3^3}{.2^6} + C_{10}^8.C_8^7{.3.2^7}\)
Tìm hệ số không chứa \(x\) trong các khai triển sau \({\left( {{x^3} - \dfrac{2}{x}} \right)^n}\), biết rằng \(C_n^{n - 1} + C_n^{n - 2} = 78\) với \(x > 0\)
Ta có: \(C_n^{n - 1} + C_n^{n - 2} = 78 \Leftrightarrow \dfrac{{n!}}{{(n - 1)!1!}} + \dfrac{{n!}}{{(n - 2)!2!}} = 78\)
\( \Leftrightarrow n + \dfrac{{n(n - 1)}}{2} = 78 \Leftrightarrow {n^2} + n - 156 = 0 \Leftrightarrow n = 12\).
Khi đó: \(f(x) = {\left( {{x^3} - \dfrac{2}{x}} \right)^{12}} = \sum\limits_{k = 0}^{12} {C_{12}^k{{( - 2)}^k}{x^{36 - 4k}}} \)
Số hạng không chứa \(x\) ứng với \(k:36 - 4k = 0 \Rightarrow k = 9\)
Số hạng không chứa \(x\) là: \({( - 2)^9}C_{12}^9 = - 112640\)
Với $n$ là số nguyên dương, gọi \({a_{3n - 3}}\) là hệ số của \({x^{3n - 3}}\) trong khai triển thành đa thức của \({({x^2} + 1)^n}{(x + 2)^n}\). Tìm \(n\) để \({a_{3n - 3}} = 26n\)
Ta có: \({\left( {{x^2} + 1} \right)^n}{\left( {x + 2} \right)^n} = {x^{3n}}{\left( {1 + \dfrac{1}{{{x^2}}}} \right)^n}{\left( {1 + \dfrac{2}{x}} \right)^n}\)
\( = {x^{3n}}\sum\limits_{i = 0}^n {C_n^i{{\left( {\dfrac{1}{{{x^2}}}} \right)}^i}\sum\limits_{k = 0}^n {C_n^k{{\left( {\dfrac{2}{x}} \right)}^k}} = } {x^{3n}}\left[ {\sum\limits_{i = 0}^n {C_n^i{x^{ - 2i}}\sum\limits_{k = 0}^n {C_n^k{2^k}{x^{ - k}}} } } \right]\)
Trong khai triển trên , luỹ thừa của \(x\) là \(3n - 3\) khi
\( - 2i - k = - 3 \Leftrightarrow 2i + k = 3\).
Ta chỉ có hai trường hợp thoả mãn điều kiện này là \(i = 0,k = 3\) hoặc
\(i = 1,k = 1\)(vì \(i,k\) nguyên).
Hệ số của \({x^{3n - 3}}\) trong khai triển thành đa thức của \({\left( {{x^2} + 1} \right)^n}{\left( {x + 2} \right)^n}\)
Là :\({a_{3n - 3}} = C_n^0.C_n^3{.2^3} + C_n^1.C_n^1.2\).
Do đó \({a_{3n - 3}} = 26n \Leftrightarrow \dfrac{{2n\left( {2{n^2} - 3n + 4} \right)}}{3} = 26n \Leftrightarrow n = - \dfrac{7}{2}\)hoặc$n = 5$
Vậy \(n = 5\) là giá trị cần tìm.
Tìm hệ số của số hạng chứa \({x^{26}}\) trong khai triển nhị thức Newton của \({\left( {\dfrac{1}{{{x^4}}} + {x^7}} \right)^n}\), biết \(C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n = {2^{20}} - 1\)
Ta có:
\(C_{2n + 1}^0 + C_{2n + 1}^1 + ... + C_{2n + 1}^n + C_{2n + 1}^{n + 1} + ... + C_{2n + 1}^{2n + 1} = {2^{2n + 1}}\)
Vì \(C_{2n + 1}^k = C_{2n + 1}^{2n + 1 - k}\) nên:
\( C_{2n + 1}^0 + C_{2n + 1}^1 + ... + C_{2n + 1}^n + C_{2n + 1}^n + C_{2n + 1}^{n - 1} + ... + C_{2n + 1}^0 = {2^{2n + 1}}\)
\( \Leftrightarrow 2\left( {C_{2n + 1}^0 + C_{2n + 1}^1 + ... + C_{2n + 1}^n} \right) = {2^{2n + 1}}\)
\( \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^1 + ... + C_{2n + 1}^n = {2^{2n}}\)
\( \Leftrightarrow C_{2n + 1}^1 + ... + C_{2n + 1}^n = {2^{2n}} - C_{2n + 1}^0 = {2^{2n}} - 1\)
Do đó \({2^{2n}} - 1 = {2^{20}} - 1 \Leftrightarrow n = 10\)
Khi đó: \({\left( {\dfrac{1}{{{x^4}}} + {x^7}} \right)^{10}} = {\left( {{x^{ - 4}} + {x^7}} \right)^{10}} \) \(= \sum\limits_{k = 0}^{10} {C_{10}^k{{({x^{ - 4}})}^{10 - k}}.{x^{7k}}} \) \( = \sum\limits_{k = 0}^{10} {C_{10}^k{x^{11k - 40}}} \)
Hệ số chứa \({x^{26}}\) ứng với giá trị \(k:\) \(11k - 40 = 26 \Rightarrow k = 6\).
Vậy hệ số chứa \({x^{26}}\) là: \(C_{10}^6 = 210\).