Tìm hệ số của \({x^5}\) trong khai triển đa thức của: \(x{\left( {1 - 2x} \right)^5} + {x^2}{\left( {1 + 3x} \right)^{10}}\)
Trả lời bởi giáo viên
Đặt \(f(x) = x{\left( {1 - 2x} \right)^5} + {x^2}{\left( {1 + 3x} \right)^{10}}\)
Ta có : \(f(x) = x\sum\limits_{k = 0}^5 {C_5^k{{\left( { - 2} \right)}^k}.{x^k}} + {x^2}\sum\limits_{i = 0}^{10} {C_{10}^i} {\left( {3x} \right)^i}\) \( = \sum\limits_{k = 0}^5 {C_5^k{{\left( { - 2} \right)}^k}.{x^{k + 1}}} + \sum\limits_{i = 0}^{10} {C_{10}^i} {3^i}.{x^{i + 2}}\)
Vậy hệ số của \({x^5}\) trong khai triển đa thức của \(f(x)\) ứng với \(k = 4\) và \(i = 3\) là: \(C_5^4{\left( { - 2} \right)^4} + C_{10}^3{.3^3} = 3320\)
Hướng dẫn giải:
Khai triển từng tổng theo công thức \({(a + b)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \) và cho lũy thừa của \(x\) bằng \(5\)