Bài tập cuối chuyên đề 2

Sách chân trời sáng tạo

Đổi lựa chọn

Câu 1 Trắc nghiệm

Đối với bài toán chứng minh \(P\left( n \right)\) đúng với mọi \(n \ge p\) với \(p\) là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Đối với bài toán chứng minh \(P\left( n \right)\) đúng với mọi \(n \ge p\) với \(p\) là số tự nhiên cho trước thì:

- Bước 1: Chứng minh \(P\left( n \right)\) đúng với \(n = p\).

- Bước 2: Với \(k \ge p\) là một số nguyên dương tùy ý, giả sử \(P\left( n \right)\) đúng với \(n = k\), chứng minh \(P\left( n \right)\) cũng đúng khi \(n = k + 1\).

Từ đó ta thấy, ở bước đầu tiên ta cần chứng minh mệnh đề đúng với \(n = p\) chứ không phải \(n = 1\).

Câu 2 Trắc nghiệm

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến \(P\left( n \right)\) đúng với mọi số tự nhiên $n \ge p$ (\(p\) là một số tự nhiên), ta tiến hành hai bước:

\( \bullet \) Bước 1, kiểm tra mệnh đề \(P\left( n \right)\) đúng với \(n = p.\)

\( \bullet \) Bước 2, giả thiết mệnh đề \(P\left( n \right)\) đúng với số tự nhiên bất kỳ \(n = k \ge p\) và phải chứng minh rằng nó cũng đúng với \(n = k + 1.\)

Trong hai bước trên:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đối với bài toán chứng minh \(P\left( n \right)\) đúng với mọi \(n \ge p\) với \(p\) là số tự nhiên cho trước thì:

- Bước 1: Chứng minh \(P\left( n \right)\) đúng với \(n = p\).

- Bước 2: Với \(k \ge p\) là một số nguyên dương tùy ý, giả sử \(P\left( n \right)\) đúng với \(n = k\), chứng minh \(P\left( n \right)\) cũng đúng khi \(n = k + 1\).

Từ lý thuyết trên ta thấy cả hai bước trên đều đúng.

Câu 3 Trắc nghiệm

Một học sinh chứng minh mệnh đề ${\rm{''}}{8^n} + 1$ chia hết cho ${\rm{7, }}\forall n \in {\mathbb{N}^*}''$ \(\left( * \right)\) như sau:

\( \bullet \) Giả sử \(\left( * \right)\) đúng với \(n = k\), tức là ${8^k} + 1$ chia hết cho \(7.\)

\( \bullet \) Ta có: ${8^{k + 1}} + 1 = 8\left( {{8^k} + 1} \right) - 7$, kết hợp với giả thiết ${8^k} + 1$ chia hết cho \(7\) nên suy ra được ${8^{k + 1}} + 1$ chia hết cho \(7.\) Vậy đẳng thức \(\left( * \right)\) đúng với mọi \(n \in {\mathbb{N}^*}.\)

Khẳng định nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Quan sát lời giải trên ta thấy:

Học sinh thực hiện thiếu bước 1: Kiểm tra \(n = 1\) thì \({8^1} + 1 = 9\) không chia hết cho \(7\) nên mệnh đề đó sai.

Câu 4 Trắc nghiệm

Hệ số của \({x^8}\) trong khai triển biểu thức \({x^2}{\left( {1 + 2x} \right)^{10}} - {x^4}{\left( {3 + x} \right)^8}\) thành đa thức bằng

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

$ \bullet $ Xét khai triển ${x^2}{\left( {1 + 2x} \right)^{10}} = {x^2}.\sum\limits_{k\, = \,0}^{10} {C_{10}^k} {.1^{10\, - \,k}}.{\left( {2x} \right)^k} = \sum\limits_{k\, = \,0}^{10} {C_{10}^k} {.2^k}.{x^{2\, + \,k}}.$

Hệ số của số hạng chứa ${x^8}$ ứng với ${{x}^{2\,+\,k}}={{x}^{8}}\Leftrightarrow k=6\,\,\xrightarrow{{}}\,\,$Hệ số của ${x^8}$ là ${2^6}.C_{10}^6.$

$ \bullet $ Xét khai triển ${x^4}{\left( {3 + x} \right)^8} = {x^4}.\sum\limits_{i\, = \,0}^8 {C_8^i} {.3^{8\, - \,i}}.{x^i} = \sum\limits_{i\, = \,0}^8 {C_8^i} {.3^{8\, - \,i}}.{x^{i\, + \,4}}.$

Hệ số của số hạng chứa ${x^8}$ ứng với ${{x}^{i\,+\,4}}={{x}^{8}}\Leftrightarrow i=4\,\,\xrightarrow{{}}\,\,$ Hệ số của ${x^8}$ là $C_8^4{.3^4}.$

Vậy hệ số cần tìm là ${2^6}.C_{10}^6 - {3^4}.C_8^4 = 7770.$ 

Câu 5 Trắc nghiệm

Giá trị của tổng $S = 1-2 + 3-4 + ... - 2n + \left( {2n + 1} \right)$ là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Với $n = 0$ ta có: $S = 1$

Với $n = 1$ ta có $S = 1 – 2 + 3 = 2$

Với $n = 2$ ta có $S = 1 – 2 + 3 – 4 + 5 = 3$

Dự đoán $S = n + 1 (*)$, ta sẽ chứng minh $(*)$ đúng bằng quy nạp.

Với $n = 0$ đương nhiên $(*)$ đúng.

Giả sử $(*)$ đúng với $n = k$, tức là \({S_k} = 1 - 2 + 3 - 4 + ... - 2k + \left( {2k + 1} \right) = k + 1\), ta chứng minh $(*)$ đúng với $n =k+1$.

Ta có:

\(\begin{array}{l}{S_{k + 1}} = 1 - 2 + 3 - 4 + ... - 2\left( {k + 1} \right) + \left( {2\left( {k + 1} \right) + 1} \right)\\ = \left( {1 - 2 + 3 - 4 + ... - 2k + 2k + 1} \right) - \left( {2k + 2} \right) + \left( {2k + 3} \right) = {S_k} - \left( {2k + 2} \right) + \left( {2k + 3} \right) = k + 1 + 1.\end{array}\)

Vậy $(*)$ đúng với mọi số tự nhiên $n$, tức là $S = n + 1$.

Câu 6 Trắc nghiệm

Cho khai triển ${\left( {\sqrt {{x^3}}  + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^n}$ với $x > 0.$ Biết tổng hệ số của ba số hạng đầu tiên của khai triển là $631.$ Tìm hệ số của số hạng chứa ${x^5}.$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Theo khai triển nhị thức Newton, ta có

${\left( {\sqrt {{x^3}}  + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^n} $ $= \sum\limits_{k\, = \,0}^n {C_n^k} .{\left( {\sqrt {{x^3}} } \right)^{n\, - \,k}}.{\left( {\dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^k} $ $= \sum\limits_{k\, = \,0}^n {C_n^k} {.3^k}.{x^{\frac{{3\left( {n\, - \,k} \right)}}{2}}}.{x^{ - \,\frac{{2k}}{3}}} $ $= \sum\limits_{k\, = \,0}^n {C_n^k} {.3^k}.{x^{\frac{{3n}}{2} - \frac{{13k}}{6}}}.$

Suy ra tổng hệ số của 3 số hạng đầu tiên của khai triển là ${3^0}.C_n^0 + {3^1}.C_n^1 + {3^2}.C_n^2 = 631$

$ \Leftrightarrow 1 + 3n + \dfrac{{9n\left( {n - 1} \right)}}{2} = 631 \Rightarrow n = 12.$ Khi đó ${\left( {\sqrt {{x^3}}  + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^{12}} = \sum\limits_{k\, = \,0}^{12} {C_{12}^k} {.3^k}.{x^{18\, - \,\frac{{13k}}{6}}}.$

Hệ số của số hạng chứa ${x^5}$ ứng với $18-\dfrac{13k}{6}=5\Leftrightarrow k=6\,\,\xrightarrow{{}}$ Hệ số cần tìm là $C_{12}^6{.3^6}.$ 

Câu 7 Trắc nghiệm

Giá trị của biểu thức \(S = {3^{99}}C_{99}^0 + {3^{98}}.4C_{99}^1 + {3^{97}}{.4^2}C_{99}^2 + ... + {3.4^{98}}C_{99}^{98} + {4^{99}}C_{99}^{99}\)\(\) bằng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \({\left( {a + b} \right)^{99}} = C_{99}^0{a^{99}} + C_{99}^1{a^{98}}b + C_{99}^2{a^{97}}{b^2} + ... + C_{99}^{98}a{b^{98}} + C_{99}^{99}{b^{99}}\)

Thay \(a = 3,b = 4\) ta có:

\(\begin{array}{l}{\left( {3 + 4} \right)^{99}} = C_{99}^0{.3^{99}} + C_{99}^1{.3^{98}}.4 + C_{99}^2{.3^{97}}{.4^2} + ... + C_{99}^{98}{.3.4^{98}} + C_{99}^{99}{.4^{99}}\\ \Leftrightarrow {7^{99}} = {3^{99}}C_{99}^0 + {3^{98}}.4C_{99}^1 + {3^{97}}{.4^2}C_{99}^2 + ... + {3.4^{98}}C_{99}^{98} + {4^{99}}C_{99}^{99}\end{array}\)

Câu 8 Trắc nghiệm

Giá trị của biểu thức \(S = {9^{99}}C_{99}^0 + {9^{98}}C_{99}^1 + {9^{97}}C_{99}^2 + ... + 9C_{99}^{98} + C_{99}^{99}\)\(\) bằng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \({\left( {a + b} \right)^{99}} = C_{99}^0{a^{99}} + C_{99}^1{a^{98}}b + C_{99}^2{a^{97}}{b^2} + ... + C_{99}^{98}a{b^{98}} + C_{99}^{99}{b^{99}}\)

Thay \(a = 9,b = 1\) ta có:

\(\begin{array}{l}{\left( {9 + 1} \right)^{99}} = C_{99}^0{.9^{99}} + C_{99}^1{.9^{98}}.1 + C_{99}^2{.9^{97}}{.1^2} + ... + C_{99}^{98}{.9.1^{98}} + C_{99}^{99}{.1^{99}}\\ \Leftrightarrow {10^{99}} = {9^{99}}C_{99}^0 + {9^{98}}C_{99}^1 + {9^{97}}C_{99}^2 + ... + 9C_{99}^{98} + C_{99}^{99}\end{array}\)

Câu 9 Trắc nghiệm

Cho biểu thức \(S = C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2}\). Khẳng định nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Thay \(a = 1,b = 1\) ta có:

\(\begin{array}{l}{2^n} = C_n^0 + C_n^1 + C_n^2 + ... + C_n^{n - 1} + C_n^n\\ \Leftrightarrow {2^n} = 1 + n + C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2} + n + 1\\ \Leftrightarrow {2^n} - 2n - 2 = C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2}\end{array}\)

Câu 10 Trắc nghiệm

Trong các hệ thức sau đây, hệ thức nào sai? 

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: \({\left( {a + b} \right)^{2n}} = C_{2n}^0{a^{2n}} + C_{2n}^1{a^{2n - 1}}b + C_{2n}^2{a^{2n - 2}}{b^2} + ... + C_{2n}^{2n - 1}a{b^{2n - 1}} + C_{2n}^{2n}{b^{2n}}\)

Thay \(a = 1,b =  - 1\) ta có:

\(\begin{array}{l}0 = C_{2n}^0 - C_{2n}^1 + C_{2n}^2 - C_{2n}^3 + ... + C_{2n}^{2n - 2} - C_{2n}^{2n - 1} + C_{2n}^{2n}\\ \Leftrightarrow C_{2n}^0 + C_{2n}^2 + C_{2n}^4 + C_{2n}^6 + ... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5 + C_{2n}^7 + ... + C_{2n}^{2n - 1}\end{array}\)

Đáp án A đúng.

Ta có: \({\left( {a + b} \right)^{2n + 1}} = C_{2n + 1}^0{a^{2n + 1}} + C_{2n + 1}^1{a^{2n}}b + C_{2n + 1}^2{a^{2n - 1}}{b^2} + ... + C_{2n + 1}^{2n}a{b^{2n}} + C_{2n + 1}^{2n + 1}{b^{2n + 1}}\)

Thay \(a = 1,b =  - 1\) ta có:

\(\begin{array}{l}0 = C_{2n + 1}^0 - C_{2n + 1}^1 + C_{2n + 1}^2 - C_{2n + 1}^3 + ... + C_{2n + 1}^{2n - 2} - C_{2n + 1}^{2n - 1} + C_{2n + 1}^{2n} - C_{2n + 1}^{2n + 1}\\ \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^2 + C_{2n + 1}^4 + C_{2n + 1}^6 + ... + C_{2n + 1}^{2n} = C_{2n + 1}^1 + C_{2n + 1}^3 + C_{2n + 1}^5 + C_{2n + 1}^7 + ... + C_{2n + 1}^{2n + 1}\end{array}\)

Đáp án C đúng.

Áp dụng tính chất \(C_n^k = C_n^{n - k}\) ta có:

\(\begin{array}{l}C_{2n + 1}^0 = C_{2n + 1}^{2n + 1}\\C_{2n + 1}^1 = C_{2n + 1}^{2n}\\C_{2n + 1}^2 = C_{2n + 1}^{2n - 1}\\...\\C_{2n + 1}^n = C_{2n + 1}^{n + 1}\end{array}\)

Cộng vế với vế ta có

\(C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + C_{2n + 1}^3 + ... + C_{2n + 1}^n = C_{2n + 1}^{n + 1} + C_{2n + 1}^{n + 2} + C_{2n + 1}^{n + 3} + C_{2n + 1}^{n + 4} + ... + C_{2n + 1}^{2n + 1}\)

Đáp án D đúng.

Áp dụng tính chất \(C_n^k = C_n^{n - k}\) ta có:

\(\begin{array}{l}C_{2n}^0 = C_{2n}^{2n}\\C_{2n}^1 = C_{2n}^{2n - 1}\\C_{2n}^2 = C_{2n}^{2n - 2}\\...\\C_{2n}^{n - 1} = C_{2n}^{n + 1}\end{array}\)

Cộng vế với vế ta có

\(\begin{array}{l}C_{2n}^0 + C_{2n}^1 + C_{2n}^2 + C_{2n}^3 + ... + C_{2n}^{n - 1} = C_{2n}^{n + 1} + C_{2n}^{n + 2} + C_{2n}^{n + 3} + C_{2n}^{n + 4} + ... + C_{2n}^{2n}\\ \Leftrightarrow C_{2n}^0 + C_{2n}^1 + C_{2n}^2 + C_{2n}^3 + ... + C_{2n}^n > C_{2n}^{n + 1} + C_{2n}^{n + 2} + C_{2n}^{n + 3} + C_{2n}^{n + 4} + ... + C_{2n}^{2n}\end{array}\)

Đáp án B sai.

Câu 11 Trắc nghiệm

Số nguyên dương \(n\) thỏa mãn \(C_n^0.C_{n + 1}^n + C_n^1.C_{n + 1}^{n - 1} + C_n^2.C_{n + 1}^{n - 2} + ... + C_n^{n - 1}.C_{n + 1}^1 + C_n^n.C_{n + 1}^0 = 1716\) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có:

\({\left( {1 + x} \right)^{2n + 1}} = C_{2n + 1}^0 + C_{2n + 1}^1x + C_{2n + 1}^2{x^2} + ... + C_{2n + 1}^{2n}{x^{2n}} + C_{2n + 1}^{2n + 1}{x^{2n + 1}}\)

Mặt khác:

\({\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^{n - 1}{x^{n - 1}} + C_n^n{x^n}\)

\({\left( {1 + x} \right)^{n + 1}} = C_{n + 1}^0 + C_{n + 1}^1x + C_{n + 1}^2{x^2} + ... + C_{n + 1}^{n - 1}{x^{n - 1}} + C_{n + 1}^n{x^n} + C_{n + 1}^{n + 1}{x^{n + 1}}\)

Suy ra

\({\left( {1 + x} \right)^n}{\left( {1 + x} \right)^{n + 1}} = \left( {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right)  ( {C_{n + 1}^0 + C_{n + 1}^1x + C_{n + 1}^2{x^2} + ... + C_{n + 1}^{n + 1}{x^{n + 1}}} ) \)

Đồng nhất hệ số của \({x^n}\) ta được:

\(C_n^0.C_{n + 1}^n + C_n^1.C_{n + 1}^{n - 1} + C_n^2.C_{n + 1}^{n - 2} + ... + C_n^{n - 1}.C_{n + 1}^1 + C_n^n.C_{n + 1}^0 = C_{2n + 1}^n\)

Với \(n = 9\) ta có: \(C_{2n + 1}^n = C_{19}^9 = 92378\)

Với \(n = 8\) ta có: \(C_{2n + 1}^n = C_{17}^8 = 24310\)

Với \(n = 7\) ta có: \(C_{2n + 1}^n = C_{15}^7 = 6435\)

Với \(n = 6\) ta có: \(C_{2n + 1}^n = C_{13}^6 = 1716\)

Câu 12 Trắc nghiệm

Tổng các hệ số của tất cả các số hạng trong khai triển nhị thức \({\left( {x - 2y} \right)^{2020}}\) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Thay \(x = y = 1\)  có \({\left( {1 - 2.1} \right)^{2020}} = {\left( { - 1} \right)^{2020}} = 1\).

Vậy tổng các hệ số của tất cả các số hạng trong khai triển nhị thức \({\left( {x - 2y} \right)^{2020}}\) bằng 1.

Câu 13 Trắc nghiệm

Cho \({\left( {1 + 2x} \right)^n} = {a_0} + {a_1}{x^1} + ... + {a_n}{x^n}.\) Biết  \({a_0} + \dfrac{{{a_1}}}{2} + \dfrac{{{a_2}}}{{{2^2}}} + ... + \dfrac{{{a_n}}}{{{2^n}}} = 4096.\) Số lớn nhất trong các số \({a_0},{a_1},{a_2},...,{a_n}\) có giá trị bằng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét: \({\left( {1 + 2x} \right)^n} = {a_0} + {a_1}{x^1} + ... + {a_n}{x^n}.\)

Thay \(x = \dfrac{1}{2}\) vào 2 vế \( \Rightarrow {\left( {1 + 2.\dfrac{1}{2}} \right)^n} = {a_0} + {a_1}\dfrac{1}{2} + ... + {a_n}\dfrac{1}{{{2^n}}}\)

\( \Leftrightarrow {2^n} = 4096 \Leftrightarrow {2^n} = {2^{12}}\)\( \Leftrightarrow n = 12\)

\( \Rightarrow \) Biểu thức là: \({\left( {1 + 2x} \right)^{12}}\)

+ Số hạng tổng quát của khai triển là: \({T_{k + 1}} = C_{12}^k{.2^k}.{x^k}\)

\( + )\)Hệ số lớn nhất \( \Leftrightarrow y = C_{12}^k{.2^k}\) max \(\left( {0 \le k \le 12} \right)\)

Mà hệ số max \( \Rightarrow {k_{\max }}\)\( \Rightarrow \) Muốn \(k\) max thì k phải lớn hơn cả số hạng đứng trước nó là (k-1) và lớn hơn cả số hạng đứng sau nó là (k+1)

\( \Rightarrow \) Ta có hệ: \(\left\{ \begin{array}{l}C_{12}^{k - 1}{.2^{k - 1}} < C_{12}^k{.2^k}\,\,(1)\\C_{12}^{k + 1}{.2^{k + 1}} < C_{12}^k{.2^k}\,\,(2)\end{array} \right.\)

+ (1) \( \Leftrightarrow \)\(\dfrac{{12!}}{{\left( {k - 1} \right)!\,\,(12 - k + 1)!}}.\dfrac{{{2^k}}}{2} < \dfrac{{12!}}{{k!\,\,\left( {12 - k} \right)!}}{.2^k}\)

\( \Leftrightarrow \dfrac{1}{{(k - 1)!\,\,\left( {13 - k} \right)\left( {12 - k} \right)!}}.\dfrac{1}{2} < \dfrac{1}{{k\left( {k - 1} \right)!\,\,\left( {12 - k} \right)!}}\)

\( \Leftrightarrow \dfrac{1}{{2.\left( {13 - k} \right)}} < \dfrac{1}{k} \Leftrightarrow \dfrac{1}{{13 - k}} < \dfrac{2}{k}\)

+ (2) ta làm tương tự như trên\( \Rightarrow \dfrac{2}{{k + 1}} < \dfrac{1}{{12 - k}}\)

Từ (1) và (2) \( \Rightarrow \)\(\left\{ \begin{array}{l}\dfrac{1}{{13 - k}} < \dfrac{2}{k}\\\dfrac{2}{{k + 1}} < \dfrac{1}{{12 - k}}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}k < \dfrac{{26}}{3}\\k > \dfrac{{23}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k < 8,6\\k > 7,6\end{array} \right.\)(Mà k là số nguyên)\( \Rightarrow k = 8\)

\( \Rightarrow \)Hệ số lớn nhất trong khai triển biểu thức là: \(y\left( 8 \right) = \)\(C_{12}^8{.2^8} = 126720\)

Câu 14 Trắc nghiệm

Biết tổng các hệ số của khai triển nhị thức \({\left( {x + \dfrac{1}{{{x^2}}}} \right)^{3n}}\) là \(64.\) Tìm số hạng không chứa \(x.\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

\({\left( {x + \dfrac{1}{{{x^2}}}} \right)^{3n}} = C_{3n}^k.{{\rm{x}}^{3n - k}}.{\left( {\dfrac{1}{{{x^2}}}} \right)^k} = C_{3n}^k.{{\rm{x}}^{3n - 3k}} = C_{3n}^0.{x^{3n}} + ... + C_{3n}^{3n}.{x^0}\)(*)

+) Tổng các hệ số là: \(C_{3n}^0 + .. + C_{3n}^{3n} = 64\)

\( + )\)Thay \(x = 1\) vào cả 2 vế của (*) \( \Rightarrow \)\({2^{3n}} = C_{3n}^0 + ... + C_{3n}^{3n} \Leftrightarrow {2^{3n}} = 64\)\( \Rightarrow n = 2\)

\( + )\)Số hạng tổng quát của khai triển là:

\({T_{k + 1}} = C_{3n}^k.{x^{3n - k}}.{\left( {\dfrac{1}{{{x^2}}}} \right)^k}\)\( = C_6^k.{x^{6 - k}}.{\left( {{x^{ - 2}}} \right)^k}\)\( = C_6^k.{x^{6 - 3k}}\)

\( + )\)Số hạng không chứa \(x\)\( \Leftrightarrow 6 - 3k = 0 \Leftrightarrow k = 2\)

\( \Rightarrow \)Số hạng không chứa \(x\)là: \(C_6^2 = 15\)