Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến \(P\left( n \right)\) đúng với mọi số tự nhiên $n \ge p$ (\(p\) là một số tự nhiên), ta tiến hành hai bước:
\( \bullet \) Bước 1, kiểm tra mệnh đề \(P\left( n \right)\) đúng với \(n = p.\)
\( \bullet \) Bước 2, giả thiết mệnh đề \(P\left( n \right)\) đúng với số tự nhiên bất kỳ \(n = k \ge p\) và phải chứng minh rằng nó cũng đúng với \(n = k + 1.\)
Trong hai bước trên:
Trả lời bởi giáo viên
Đối với bài toán chứng minh \(P\left( n \right)\) đúng với mọi \(n \ge p\) với \(p\) là số tự nhiên cho trước thì:
- Bước 1: Chứng minh \(P\left( n \right)\) đúng với \(n = p\).
- Bước 2: Với \(k \ge p\) là một số nguyên dương tùy ý, giả sử \(P\left( n \right)\) đúng với \(n = k\), chứng minh \(P\left( n \right)\) cũng đúng khi \(n = k + 1\).
Từ lý thuyết trên ta thấy cả hai bước trên đều đúng.