Câu hỏi:
1 năm trước
Tổng các hệ số của tất cả các số hạng trong khai triển nhị thức \({\left( {x - 2y} \right)^{2020}}\) là:
Trả lời bởi giáo viên
Đáp án đúng: d
Thay \(x = y = 1\) có \({\left( {1 - 2.1} \right)^{2020}} = {\left( { - 1} \right)^{2020}} = 1\).
Vậy tổng các hệ số của tất cả các số hạng trong khai triển nhị thức \({\left( {x - 2y} \right)^{2020}}\) bằng 1.
Hướng dẫn giải:
Muốn tính tổng hệ số của tất của các số hạng trong khai triển nhị thức \({\left( {ax + by} \right)^n}\) ta cho \(x = y = 1\).