Giải bất phương trình bậc hai một ẩn

Sách chân trời sáng tạo

Đổi lựa chọn

Câu 1 Trắc nghiệm

Tập nghiệm của bất phương trình: $-{x^2} + 6x + 7\; \ge 0\;$là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có $-{x^2} + 6x + 7\; = 0 \Leftrightarrow \left[ \begin{array}{l}x = 7\\x =  - 1\end{array} \right.$.

Bảng xét dấu

Dựa vào bảng xét dấu $-{x^2} + 6x + 7\; \ge 0 \Leftrightarrow  - 1 \le x \le 7.$

Câu 2 Trắc nghiệm

Giải bất phương trình \( - 2{x^2} + 3x - 7 \ge 0.\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

 Ta có $-2{x^2} + 3x - 7\; = 0$ vô nghiệm.

Bảng xét dấu

Dựa vào bảng xét dấu $ - 2{x^2} + 3x - 7 \ge 0\, \Leftrightarrow \,x \in \emptyset $.

Câu 3 Trắc nghiệm

Cho bất phương trình \({x^2} - 8x + 7 \ge 0\). Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có $f\left( x \right) = {x^2} - 8x + 7 = 0\, \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 7\end{array} \right.$.

Bảng xét dấu

    

Dựa vào bảng xét dấu \(f\left( x \right) \ge 0\, \Leftrightarrow \,\left[ \begin{array}{l}x \le 1\\x \ge 7\end{array} \right.\).

Tập nghiệm của bất phương trình là \(S = \left( { - \infty ;1} \right] \cup \,\left[ {7; + \infty } \right)\).

Vì \(\dfrac{{13}}{2} \in \left[ {6; + \infty } \right)\) và \(\dfrac{{13}}{2} \notin S\) nên \(\left[ {6; + \infty } \right)\) thỏa yêu cầu bài toán.

Câu 4 Trắc nghiệm

Giải bất phương trình $x\left( {x + 5} \right) \le 2\left( {{x^2} + 2} \right)$ ta được nghiệm:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Bất phương trình $x\left( {x + 5} \right) \le 2\left( {{x^2} + 2} \right) \Leftrightarrow {x^2} + 5x \le 2{x^2} + 4 \Leftrightarrow {x^2} - 5x + 4 \ge 0$

Xét phương trình ${x^2} - 5x + 4 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 4\end{array} \right..$

Lập bảng xét dấu:

Dựa vào bảng xét dấu, ta thấy nghiệm của bất phương trình ${x^2} - 5x + 4 \ge 0$ là $ x \in \left( { - \,\infty ;1} \right] \cup \left[ {4; + \,\infty } \right).$

Câu 5 Trắc nghiệm

Cặp bất phương trình nào sau đây là tương đương?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đặt $f\left( x \right) = {x^2}\left( {x - 2} \right).$

Phương trình ${x^2} = 0 \Leftrightarrow x = 0$ và $x - 2 = 0 \Leftrightarrow x = 2.$

Lập bảng xét dấu

Dựa vào bảng xét dấu ta thấy:

+) Đáp án A: $x - 2 \le 0 \Leftrightarrow x \le 2$ và ${x^2}\left( {x - 2} \right) \le 0 \Leftrightarrow x \le 2$ nên hai bất phương trình tương đương. Chọn A.

+) Đáp án B: $x - 2 < 0 \Leftrightarrow x < 2$ và ${x^2}\left( {x - 2} \right) > 0 \Leftrightarrow x > 2$ nên hai bất phương trình không tương đương. Loại B.

+) Đáp án C: $x - 2 < 0 \Leftrightarrow x < 2$ và ${x^2}\left( {x - 2} \right) < 0 \Leftrightarrow \left\{ \begin{array}{l}x < 2\\x \ne 0\end{array} \right.$ nên hai bất phương trình không tương đương. Loại C.

+) Đáp án D: \({x^2}\left( {x - 2} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x \ge 2\end{array} \right.\) và \(x - 2 \ge 0 \Leftrightarrow x \ge 2\) nên hai bất phương trình không tương đương. Loại D.

Câu 6 Trắc nghiệm

Xác định $m$ để với mọi \(x\) ta có \( - 1 \le \dfrac{{{x^2} + 5x + m}}{{2{x^2} - 3x + 2}} < 7\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

- Vì \(2{x^2} - 3x + 2 > 0\,\,\forall x \in \mathbb{R}\) nên:

- Bất phương trình \( - 1 \le \dfrac{{{x^2} + 5x + m}}{{2{x^2} - 3x + 2}} < 7\) có tập nghiệm là \(\mathbb{R}\) khi hệ sau có tập nghiệm là \(\mathbb{R}\):

 $\left\{ \begin{array}{l} - 1\left( {2{x^2} - 3x + 2} \right) \le {x^2} + 5x + m\\{x^2} + 5x + m < 7\left( {2{x^2} - 3x + 2} \right)\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}13{x^2} - 26x + 14 - m > 0\,\,\,\left( 1 \right)\\3{x^2} + 2x + m + 2 \ge 0\,\,\,\,\,\,\,\,\;\left( 2 \right)\end{array} \right.$

- Ta có \(\left( 1 \right)\) có tập nghiệm là \(\mathbb{R}\) khi \(\Delta ' < 0 \Leftrightarrow  - 13 + 13m < 0\)\( \Leftrightarrow m < 1\) (3)

- \(\left( 2 \right)\) có tập nghiệm là \(\mathbb{R}\) khi \(\Delta ' \le 0 \Leftrightarrow  - 5 - 3m \le 0\)\( \Leftrightarrow m \ge  - \dfrac{5}{3}\) (4)

Từ (2) và (4), ta có \( - \dfrac{5}{3} \le m < 1\).

Câu 7 Trắc nghiệm

Bất phương trình \(\left( {\left| {x - 1} \right| - 3} \right)\left( {\left| {x + 2} \right| - 5} \right) < 0\) có nghiệm là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Trường hợp 1:\(\left\{ \begin{array}{l}\left| {x - 1} \right| - 3 > 0\\\left| {x + 2} \right| - 5 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x - 1 > 3\\x - 1 <  - 3\end{array} \right.\\ - 5 < x + 2 < 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > 4\\x <  - 2\end{array} \right.\\ - 7 < x < 3\end{array} \right.\)\( \Leftrightarrow  - 7 < x <  - 2\)

Trường hợp 2: \(\left\{ \begin{array}{l}\left| {x - 1} \right| - 3 < 0\\\left| {x + 2} \right| - 5 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 3 < x - 1 < 3\\\left[ \begin{array}{l}x + 2 > 5\\x + 2 <  - 5\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 2 < x < 4\\\left[ \begin{array}{l}x > 3\\x <  - 7\end{array} \right.\end{array} \right.\)\( \Leftrightarrow 3 < x < 4\)

Câu 8 Trắc nghiệm

Bất phương trình:\(\sqrt { - {x^2} + 6x - 5}  > 8 - 2x\) có nghiệm là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có$\sqrt { - {x^2} + 6x - 5}  > 8 - 2x$

$ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{ - {x^2} + 6x - 5 \ge 0}\\{8 - 2x < 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{8 - 2x \ge 0}\\{ - {x^2} + 6x - 5 > {{\left( {8 - 2x} \right)}^2}}\end{array}} \right.}\end{array}} \right.$$ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{1 \le x \le 5}\\{x > 4}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x \le 4}\\{ - 5{x^2} + 38x - 69 > 0}\end{array}} \right.}\end{array}} \right.$$ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{1 \le x \le 5}\\{x > 4}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x \le 4}\\{3 < x < \dfrac{{23}}{5}}\end{array}} \right.}\end{array}} \right.$

\( \Leftrightarrow \left[ \begin{array}{l}
4 < x \le 5\\
3 < x \le 4
\end{array} \right. \Leftrightarrow 3 < x \le 5\)

Câu 9 Trắc nghiệm

Tập nghiệm \(S\) của bất phương trình \(\dfrac{{ - \,2{x^2} + 7x + 7}}{{{x^2} - 3x - 10}} \le  - 1\) là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện: \({x^2} - 3x - 10 \ne 0 \Leftrightarrow \left( {x + 2} \right)\left( {x - 5} \right) \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne  - \,2\\x \ne 5\end{array} \right..\)

Bất phương trình \(\dfrac{{ - \,2{x^2} + 7x + 7}}{{{x^2} - 3x - 10}} \le  - 1\)\( \Leftrightarrow \dfrac{{ - 2{x^2} + 7x + 7}}{{{x^2} - 3x - 10}} + 1 \le 0\) \( \Leftrightarrow \dfrac{{ - {x^2} + 4x - 3}}{{{x^2} - 3x - 10}} \le 0\,\,\,\,\left(  *  \right)\)

Bảng xét dấu

Dựa vào bảng xét dấu, bất phương trình \(\left(  *  \right) \Leftrightarrow x \in \left( { - \,\infty ; - \,2} \right) \cup \left[ {1;3} \right] \cup \left( {5; + \,\infty } \right).\)

Câu 10 Trắc nghiệm

Nghiệm của hệ bất phương trình: $\left\{ {\begin{array}{*{20}{c}}{2{x^2} - x - 6 \le 0}\\{{x^3} + {x^2} - x - 1 \ge 0}\end{array}} \right.$là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Cách giải:

Ta có $2{x^2} - x - 6 \le 0 \Leftrightarrow  - \dfrac{3}{2} \le x \le 2,{\rm{ }}\left( I \right)$.

${x^3} + {x^2} - x - 1 \ge 0$$ \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - 1} \right) \ge 0$$ \Leftrightarrow \left( {x - 1} \right){\left( {x + 1} \right)^2} \ge 0$$ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 1}\\{x \ge 1}\end{array}} \right..{\rm{ }}\left( {II} \right)$

Từ $\left( I \right)$ và $\left( {II} \right)$ suy ra nghiệm của hệ là $S = \left[ {1;{\rm{ }}2} \right] \cup \left\{ { - 1} \right\}$.

Câu 11 Trắc nghiệm

Số nghiệm của phương trình: $\sqrt {x + 8 - 2\sqrt {x + 7} } = 2 - \sqrt {x + 1 - \sqrt {x + 7} } $ là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Điều kiện \(x \ge  - 7\).

Đặt \(t = \sqrt {x + 7} \) , điều kiện \(t \ge 0\).

Ta có \(\sqrt {{t^2} + 1 - 2t}  = 2 - \sqrt {{t^2} - 6 - t} \)\( \Leftrightarrow \left| {t - 1} \right| = 2 - \sqrt {{t^2} - t - 6} \)

Nếu \(t \ge 1\) thì ta có \(3 - t = \sqrt {{t^2} - t - 6} \)\( \Leftrightarrow \left\{ \begin{array}{l}{t^2} - t - 6 = 9 - 6t + {t^2}\\t \le 3\end{array} \right.\)\( \Leftrightarrow t = 3\)\( \Leftrightarrow \sqrt {x + 7}  = 3\)\( \Leftrightarrow x = 2\)

Nếu \(t < 1\) thì ta có \(1 + t = \sqrt {{t^2} - t - 6} \)\( \Leftrightarrow \left\{ \begin{array}{l}{t^2} - t - 6 = 1 + 2t + {t^2}\\t \ge  - 1\end{array} \right.\)\( \Leftrightarrow t =  - \dfrac{7}{3}\;\;\left( l \right)\).

Câu 12 Trắc nghiệm

Hệ bất phương trình $\left\{ \begin{array}{l}{x^2} - 1 \le 0\\x - m > 0\end{array} \right.$ có nghiệm khi

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: $\left\{ \begin{array}{l}{x^2} - 1 \le 0\\x - m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 1\\x > m\end{array} \right.$.

Do đó hệ có nghiệm khi \(m < 1\).

Câu 13 Trắc nghiệm

Xác định $m$ để phương trình $\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0$ có ba nghiệm phân biệt lớn hơn $–1.$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có $\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0$$ \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} + 2\left( {m + 3} \right)x + 4m + 12 = 0\;\,\left( * \right)\end{array} \right.$.

Giả sử phương trình $\left( * \right)$ có hai nghiệm phân biệt ${x_1},{x_2}$, theo Vi-et ta có

$\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\left( {m + 3} \right)\\{x_1}.{x_2} = 4m + 12\end{array} \right.$.

Để phương trình $\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0$có ba nghiệm phân biệt lớn hơn $-1$. thì phương trình $\left( * \right)$ có hai nghiệm phân biệt ${x_1},{x_2}$ khác $1$ và đều lớn hơn $ - 1$.

$ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\1 + 2\left( {m + 3} \right) + 4m + 12 \ne 0\\{x_2} > {x_1} >  - 1\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}{\left( {m + 3} \right)^2} - \left( {4m + 12} \right) > 0\\6m + 19 \ne 0\\\left( {{x_1} + 1} \right) + \left( {{x_2} + 1} \right) > 0\\\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) > 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2m - 3 > 0\\m \ne  - \dfrac{{19}}{6}\\ - 2\left( {m + 3} \right) + 2 > 0\\4m + 12 - 2\left( {m + 3} \right) + 1 > 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 1\\m <  - 3\end{array} \right.\\m \ne  - \dfrac{{19}}{6}\\m <  - 2\\m >  - \dfrac{7}{2}\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l} - \dfrac{7}{2} < m <  - 3\\m \ne  - \dfrac{{19}}{6}\end{array} \right.$.

Câu 14 Trắc nghiệm

Để phương trình sau có 4 nghiệm phân biệt: \(\left| {10x - 2{x^2} - 8} \right| = {x^2} - 5x + a\) thì giá trị của tham số \(a\) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét phương trình: \(\left| {10x - 2{x^2} - 8} \right| = {x^2} - 5x + a\)     (1)

\( \Leftrightarrow a = \left| {10x - 2{x^2} - 8} \right| - {x^2} + 5x\)

Xét \(f\left( x \right) = \left| {10x - 2{x^2} - 8} \right| - {x^2} + 5x\)

\( = \left\{ \begin{array}{l}\left( {10x - 2{x^2} - 8} \right) - {x^2} + 5x{\rm{ }} & {\rm{khi }}10x - 2{x^2} - 8 \ge 0\\ - \left( {10x - 2{x^2} - 8} \right) - {x^2} + 5x{\rm{ }} & {\rm{khi }}10x - 2{x^2} - 8 < 0\end{array} \right.\)

\( = \left\{ \begin{array}{l} - 3{x^2} + 15x - 8 & {\rm{khi }}1 \le x \le 4\\{x^2} - 5x + 8 & {\rm{khi }}x \le 1 \vee x \ge 4\end{array} \right.\)

Bảng biến thiên:

Dựa vào bảng biến thiên ta có phương trình (1) có 4 nghiệm phân biệt \( \Leftrightarrow 4 < a < \dfrac{{43}}{4}\).

Câu 15 Trắc nghiệm

Để bất phương trình \(\sqrt {(x + 5)(3 - x)} \le {x^2} + 2x + a\) nghiệm đúng \(\forall x \in \left[ { - 5;3} \right]\), tham số \(a\) phải thỏa điều kiện:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

\(\sqrt {\left( {x + 5} \right)\left( {3 - x} \right)}  \le {x^2} + 2x + a \Leftrightarrow \sqrt { - {x^2} - 2x + 15}  - {x^2} - 2x \le a\)

Đặt \(t = \sqrt { - {x^2} - 2x + 15} \), ta có bảng biến thiên

Suy ra \(t \in \left[ {0;4} \right]\).

Bất phương trình đã cho thành ${t^2} + t - 15 \le a$.

Xét hàm $f\left( t \right) = {t^2} + t - 15$ với \(t \in \left[ {0;4} \right]\)

Ta có bảng biến thiên

Bất phương trình \({t^2} + t - 15 \le a\) nghiệm đúng \(\forall t \in \left[ {0;4} \right]\) khi và chỉ khi \(a \ge 5.\)

Câu 16 Trắc nghiệm

Cho bất phương trình: ${x^2} - 2x \le \left| {x - 2} \right| + ax - 6$. Giá trị dương nhỏ nhất của $a$ để bất phương trình có nghiệm gần nhất với số nào sau đây:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Trường hợp 1: $x \in \left[ {2; + \infty } \right)$.

Khi đó bất phương trình đã cho trở thành:

${x^2} - \left( {a + 3} \right)x + 8 \le 0$$ \Leftrightarrow a \ge x + \dfrac{8}{x} - 3 \ge 4\sqrt 2  - 3 \approx 2,65$$\forall x \in \left[ {2; + \infty } \right)$.

Dấu  xảy ra khi $x = 2\sqrt 2 $.

Trường hợp 2: $x \in \left( { - \infty ;2} \right)$.

Khi đó bất phương trình đã cho trở thành:

${x^2} - \left( {a + 1} \right)x + 4 \le 0$

$\Leftrightarrow ax \ge {x^2} -x+4$

$ \Leftrightarrow \left[ \begin{array}{l}a \ge \dfrac{{x^2} -x+4}{x}\;\;khi\;\;x \in \left( {0;2} \right)\;\;\;\;\;\;\\a \le \dfrac{{x^2} -x+4}{x}\;\;khi\;\;x \in \left( { - \infty ;0} \right)\;\;\;\end{array} \right.$.

$ \Leftrightarrow \left[ \begin{array}{l}a \ge x + \dfrac{4}{x} - 1\;\;khi\;\;x \in \left( {0;2} \right)\;\;\;\;\;\;\left( 1 \right)\\a \le x + \dfrac{4}{x} - 1\;\;khi\;\;x \in \left( { - \infty ;0} \right)\;\;\;\left( 2 \right)\end{array} \right.$.

Giải $\left( 1 \right)$ ta được $a > 3$ (theo bất đẳng thức Cauchy).

Giải $\left( 2 \right)$: $a \le x + \dfrac{4}{x} - 1$$ \Leftrightarrow a \le  - 2\sqrt {x.\dfrac{4}{x}}  - 1 =  - 5$.

Vậy giá trị dương nhỏ nhất của $a$ gần với số $2,6$.

Câu 17 Trắc nghiệm

Bất phương trình: $\left| {{x^4} - 2{x^2} - 3} \right| \le {x^2} - 5$ có bao nhiêu nghiệm nghiệm nguyên?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đặt \(t = {x^2} \ge 0\)

Ta có \(\left| {{t^2} - 2t - 3} \right| \le t - 5\).

Nếu \({t^2} - 2t - 3 \ge 0 \Leftrightarrow \left[ \begin{array}{l}t \le  - 1\\t \ge 3\end{array} \right.\) thì ta có \({t^2} - 3t + 2 \le 0 \Leftrightarrow 1 \le t \le 2\) loại

Nếu \({t^2} - 2t - 3 < 0 \Leftrightarrow  - 1 < t < 3\) thì ta có \( - {t^2} + t + 8 \le 0 \Leftrightarrow \left[ \begin{array}{l}t \le \dfrac{{1 - \sqrt {33} }}{2}\\t \ge \dfrac{{1 + \sqrt {33} }}{2}\end{array} \right.\) loại.

Câu 18 Trắc nghiệm

Để phương trình: $\left| {x + 3} \right|(x - 2) + m - 1 = 0$có đúng một nghiệm, các giá trị của tham số \(m\)là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có $\left| {x + 3} \right|\left( {x - 2} \right) + m - 1 = 0 \Leftrightarrow m = 1 - \left| {x + 3} \right|\left( {x - 2} \right)$

Xét hàm số $y = 1 - \left| {x + 3} \right|(x - 2)$

Ta có $y = \left\{ \begin{array}{l} - {x^2} - x + 7\,\,\;khi\,\,\;x \ge  - 3\\{x^2} + x - 5\,\,\;\;\;khi\,\;\;x <  - 3\end{array} \right.$

Bảng biến thiên của $y = 1 - \left| {x + 3} \right|(x - 2)$

Dựa vào bảng trên phương trình có đúng $1$ nghiệm khi và chỉ khi$\left[ \begin{array}{l}m < 1\\m > \dfrac{{29}}{4}\end{array} \right.$

Câu 19 Trắc nghiệm

Bất phương trình  \(\left( {x + 1} \right)\left( {x + 4} \right) < 5\sqrt {{x^2} + 5x + 28} \) có nghiệm là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

TXĐ: \(D = \mathbb{R}\)

\(\left( {x + 1} \right)\left( {x + 4} \right) < 5\sqrt {{x^2} + 5x + 28} \)\( \Leftrightarrow {x^2} + 5x + 4 - 5\sqrt {{x^2} + 5x + 28}  < 0\)(1)

Đặt \(\sqrt {{x^2} + 5x + 28}  = t\left( {t > 0} \right)\)

(1) trở thành: \({t^2} - 5t - 24 < 0 \Leftrightarrow  - 3 < t < 8\)

\(\begin{array}{l} \Rightarrow {x^2} + 5x + 28 < 64\\ \Leftrightarrow {x^2} + 5x - 36 < 0 \Leftrightarrow  - 9 < x < 4\end{array}\)

Câu 20 Trắc nghiệm

Tìm \(m\) để bất phương trình \(\sqrt {x - {m^2} - m} \left( {3 - \dfrac{{x + 1}}{{{x^3} - {x^2} - 3x + 3}}} \right) < 0\,\,(*)\) có nghiệm .

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \(\left( * \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3 - \dfrac{{x + 1}}{{{x^3} - {x^2} - 3x + 3}} < 0}\\{x > {m^2} + m}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\left( {x - 2} \right)\left( {3{x^2} + 3x - 4} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - 3} \right)}} < 0}\\{x > {m^2} + m}\end{array}} \right.\)  \(\left( {**} \right)\)

Bảng xét dấu:

Tập nghiệm của bất phương trình \(\dfrac{{\left( {x - 2} \right)\left( {3{x^2} + 3x - 4} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - 3} \right)}} < 0\) là \(S = \left( {\dfrac{{ - 3 - \sqrt {57} }}{6}; - \sqrt 3 } \right) \cup \left( {\dfrac{{ - 3 + \sqrt {57} }}{6};1} \right) \cup \left( {\sqrt 3 ;2} \right)\)

Do đó bất phương trình \(\left( * \right)\) có nghiệm khi và chỉ khi hệ bất phương trình\(\left( {**} \right)\) có nghiệm

\( \Leftrightarrow {m^2} + m < 2\)\( \Leftrightarrow {m^2} + m - 2 < 0\)\( \Leftrightarrow  - 2 < m < 1\)

Vậy \( - 2 < m < 1\) là giá trị cần tìm.