Giải tam giác và ứng dụng thực tế

Sách chân trời sáng tạo

Đổi lựa chọn

  •   
Câu 1 Trắc nghiệm

Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận người ta lấy hai điểm AB trên mặt đất có khoảng cách AB=12m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của giác kế có chiều cao h=1,3m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được góc ^DA1C1=49^DB1C1=35. Tính chiều cao CD của tháp.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có ^C1DA1=9049=41; ^C1DB1=9035=55, nên ^A1DB1=14.

Xét tam giác A1DB1, có A1B1sin^A1DB1=A1Dsin^A1B1DA1D=12.sin35sin1428,45m.

Xét tam giác C1A1D vuông tại C1, có

sin^C1A1D=C1DA1DC1D=A1D.sinC1A1D=28,45.sin4921,47mCD=C1D+CC122,77m.

Câu 2 Trắc nghiệm

Trên nóc một tòa nhà có cột ăng-ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 5040 so với phương nằm ngang (như hình vẽ bên). Chiều cao của tòa nhà (được làm tròn đến hàng phần mười) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có chiều cao của tòa nhà chính là đoạn BH.

BH=CD+DH=CD+7.

Xét tam giác ACD vuông tại DAC=CDsin40

Xét tam giác ABD vuông tại DAB=5+CDsin50

Xét tam giác ABC có:

BC2=AB2+AC22AB.AC.cos^BAC

(1sin250+1sin2402cos10sin40sin50)CD2+(10sin25010cos10sin40sin50)CD+25sin25025=0CD11,9

BC7+11,918,9 (m).

Vậy tòa nhà cao 18,9m.

Câu 3 Trắc nghiệm

Cho tam giác ABCa=5 cm, c=9 cm, cosC=110. Tính độ dài đường cao ha hạ từ A của tam giác ABC.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Áp dụng định lí cosin trong tam giác ABC ta có:

c2=a2+b22a.b.cosC81=25+b22.5.b.(110)b2b56=0 [b=7b=8

Ta nhận được b=7(cm)

Diện tích tam giác ABCSΔABC=p(pa)(pb)(pc)=212(2125)(2127)(2129)=21114(cm2)

Độ dài đường cao ha=2Sa=211125=211110(cm)

Câu 4 Trắc nghiệm

Từ một miếng tôn có hình dạng là nửa đường tròn bán kính 1m, người ta cắt ra một hình chữ nhật. Hỏi có thể cắt được miếng tôn có diện tích lớn nhất là bao nhiêu?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Xét đường tròn bán kính 1, ta cắt trên đó một hình chữ nhật ABCD.

Khi đó SABCD=12AC.BD.sinα=2sinα2.

Dấu bằng xảy ra khi và chỉ khi α=90.

Vậy diện tích lớn nhất của miếng tôn cắt trên nửa đường tròn bằng 1.

Câu 5 Trắc nghiệm

Hai chiếc tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau góc 600. Tàu B chạy với tốc độ 20 hải lí một giờ. Tàu C chạy với tốc độ 15 hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Sau 2 giờ tàu B đi được 40 hải lí, tàu C đi được 30 hải lí. Vậy tam giác ABCAB=40,AC=30ˆA=600.

Áp dụng định lí côsin vào tam giác ABC, ta có

a2=b2+c22bccosA=302+4022.30.40.cos600=900+16001200=1300

Vậy BC=130036 (hải lí).

Sau 2 giờ, hai tàu cách nhau khoảng 36 hải lí.

Câu 6 Trắc nghiệm

Từ vị trí A người ta quan sát một cây cao (hình vẽ).

      Biết AH=4m,HB=20m,^BAC=450.

      Chiều cao của cây gần nhất với giá trị nào sau đây?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Trong tam giác AHB, ta có tan^ABH=AHBH=420=15 ^ABH11019

Suy ra ^ABC=900^ABH=78041.

Suy ra ^ACB=1800(^BAC+^ABC)=56019.

Áp dụng định lý sin trong tam giác ABC, ta được ABsin^ACB=CBsin^BACCB=AB.sin^BACsin^ACB17m

Câu 7 Trắc nghiệm

Cho tam giác ABC có ˆB=135o. Khẳng định nào sau đây là đúng?

Công thức tính diện tích là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có:

Công thức tính diện tích là: S=12ac.sinB

ˆB=135osinB=sin135o=22.

Thay vào công thức tính diện tích, ta được:

S=12ac.22=24.ac

Câu 8 Trắc nghiệm

Cho tam giác ABC có ˆB=135o. Khẳng định nào sau đây là đúng?

Bán kính đường tròn ngoại tiếp R là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Theo định lí sin, ta có: R=a2sinA=b2sinB=c2sinC

R=asinA sai.

R=22b

sinB=22R=b2sinB=b2=22b

Vậy B đúng.

R=22c (Loại vì không có dữ kiện về góc C nên không thể tính R theo c.)

R=22a (Loại vì không có dữ kiện về góc A nên không thể tính R theo a.)

Câu 9 Trắc nghiệm

Cho tam giác ABC có ˆB=135o. Khẳng định nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

a2=b2+c2+2ab. (Loại)

Vì: Theo định lí cos ta có: a2=b2+c22bc.cosA

Không đủ dữ kiện để suy ra a2=b2+c2+2ab.

bsinA=asinB (Loại)

Theo định lí sin, ta có: asinA=bsinB 

sinB=22(sai vì theo câu a, sinB=22)

b2=c2+a22cacos135o.

Theo định lý cos ta có:

b2=c2+a22ca.cosB (*)

ˆB=135ocosB=cos135o.

Thay vào (*) ta được: b2=c2+a22cacos135o

Vậy D đúng.

Câu 10 Trắc nghiệm

Cho tam giác ABC. Khẳng định nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

A.S=abc4r

Ta có: S=abc4R. Mà r<Rnên suy ra S=abc4R<abc4r

Vậy A sai.

B.r=2Sa+b+c

Ta có: S=prr=Sp

p=a+b+c2r=Sp=Sa+b+c2=2Sa+b+c

Vậy B đúng

C. {a^2} = {b^2} + {c^2} + 2bc\;\cos A

Sai vì theo định lí cos ta có: {a^2} = {b^2} + {c^2} - 2bc\;\cos A

D. S = r\,(a + b + c)

Sai vì S = pr = r.\dfrac{{a + b + c}}{2}

Câu 11 Trắc nghiệm

Cho tam giác ABC. Khẳng định nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

+ \sin A = \sin \,(B + C)

Ta có: \widehat A + \widehat B + \widehat C = {180^o}

\begin{array}{l} \Rightarrow \widehat B + \widehat C = {180^o} - \widehat A\\ \Rightarrow \sin \,(B + C) = \sin A\end{array}

Vậy A đúng.

+ \cos A = \cos \,(B + C)

Sai vì \cos \,(B + C) = - \cos A(Do \widehat A + \widehat B + \widehat C = {180^o})

+ \;\cos A > 0

Không đủ dữ kiện để kết luận.

Nếu {0^o} < \widehat A < {90^o} thì \cos A > 0

Nếu {90^o} < \widehat A < {180^o} thì \cos A < 0

+ \sin A\,\, \le 0

Ta có S = \dfrac{1}{2}bc.\sin A > 0

b,c > 0

 \Rightarrow \sin A > 0

Vậy D sai.

Câu 12 Trắc nghiệm

Cho tam giác ABC có \widehat B = {60^o},\;\,\widehat C = {45^o},AC = 10.

Tính R.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Theo định lí sin: \dfrac{a}{{2\sin A}} = \dfrac{b}{{2\sin B}} = \dfrac{c}{{2\sin C}} = R

+) Ta có: R = \dfrac{b}{{2\sin B}}

b = AC = 10,\;\;\widehat B = {60^o}

 \Rightarrow R = \dfrac{{10}}{{2\sin {{60}^o}}} = \dfrac{{10}}{{\sqrt 3 }} = \dfrac{{10\sqrt 3 }}{3}.

Câu 13 Trắc nghiệm

Cho tam giác ABC có \widehat B = {60^o},\;\,\widehat C = {45^o},AC = 10.

Tính a.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: R = \dfrac{a}{{2\sin A}} \Rightarrow a =2R.\sin A

R = \dfrac{{10\sqrt 3 }}{3}, \widehat A = {180^o} - \left( {\widehat B + \;\widehat C} \right) = {180^o} - \left( {{{60}^o} + {{45}^o}} \right) = {75^o}

 \Rightarrow a = \dfrac{{2.10\sqrt 3 }}{3}.\sin {75^o} \approx 11,154

Câu 14 Trắc nghiệm

Trên biển, tàu B ở vị trí cách tàu A 53km về hướng N{34^o}E. Sau đó, tàu B chuyển động thẳng đều với vận tốc có độ lớn 30 km/h về hướng đông và tàu A chuyển động thẳng đều với vận tốc có độ lớn 50 km/h để đuổi kịp tàu B.

Hỏi tàu A cần phải chuyển động theo hướng nào?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi t (đơn vị: giờ) là thời gian đi cho đến khi hai tàu gặp nhau tại C.

Tàu B đi với vận tốc có độ lớn 30km/h nên quãng đường BC = 30t

Tàu A đi với vận tốc có độ lớn 50km/h nên quãng đường AC = 50t

Theo định lí sin, ta có: \dfrac{a}{{\sin \alpha }} = \dfrac{b}{{\sin B}}

Trong đó: \left\{ \begin{array}{l}a = BC = 30t\\b = AC = 50t\\\widehat B = {124^o}\end{array} \right.

\begin{array}{l} \Rightarrow \dfrac{{30t}}{{\sin \alpha }} = \dfrac{{50t}}{{\sin {{124}^o}}}\\ \Leftrightarrow \sin \alpha = \dfrac{{30t.\sin {{124}^o}}}{{50t}} = \dfrac{{30.\sin {{124}^o}}}{{50}} \approx 0,4974\end{array}

 \Leftrightarrow \alpha \approx {30^o} hoặc \alpha \approx {150^o}(loại)

Vậy tàu A chuyển động theo hướng tạo với vị trí ban đầu của tàu B góc {30^o}.

Câu 15 Trắc nghiệm

Trên biển, tàu B ở vị trí cách tàu A 53km về hướng N{34^o}E. Sau đó, tàu B chuyển động thẳng đều với vận tốc có độ lớn 30 km/h về hướng đông và tàu A chuyển động thẳng đều với vận tốc có độ lớn 50 km/h để đuổi kịp tàu B.

 Với hướng chuyển động đó thì sau bao lâu tàu A đuổi kịp tàu B?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét tam giác ABC, ta có:

\begin{array}{l}\widehat B = {124^o};\widehat A = {30^o}\\ \Rightarrow \widehat C = {180^o} - \left( {\widehat B + \widehat A} \right) = {180^o} - \left( {{{124}^o} + {{30}^o}} \right) = {26^o}\end{array}

Theo định lí sin, ta có

\dfrac{a}{{\sin A}} = \dfrac{c}{{\sin C}} \Rightarrow a = \dfrac{{c.\sin A}}{{\sin C}}

\left\{ \begin{array}{l}a = BC = 30t\\c = AB = 53\\\widehat A = {30^o};\widehat C = {26^o}\end{array} \right. \Rightarrow 30t = \dfrac{{53.\sin {{30}^o}}}{{\sin {{26}^o}}}

\begin{array}{l} \Leftrightarrow 30t \approx 60,45\\ \Leftrightarrow t \approx 2\;(h)\end{array}

Vậy sau khoảng 2 giờ thì tàu A đuổi kịp tàu B.