Trả lời bởi giáo viên
Đáp án đúng: d
Vì $\left| {x - 3} \right| \ge 0,\,\,\forall x \in \mathbb{R}$ nên suy ra $\left| {x - 3} \right| > - 1,\,\,\forall x \in \mathbb{R}.$
Vậy tập nghiệm của bất phương trình là $S = \mathbb{R}.$
Hướng dẫn giải:
Bất phương trình \(\left| {f\left( x \right)} \right| > m \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) > m\\f\left( x \right) < - m\end{array} \right.\) với \(m > 0\) và \(\left| {f\left( x \right)} \right| > m \Leftrightarrow x \in R\) với \(m < 0\).
Câu hỏi khác
Câu 6:
Cho biểu thức \(f\left( x \right) = 9{x^2} - 1.\) Tập hợp tất cả các giá trị của \(x\) để \(f\left( x \right) < 0\) là
\(x \in \left( { - \infty ; - \dfrac{1}{3}} \right) \cup \left( {\dfrac{1}{3}; + \infty } \right).\)
147