Phương trình chứa căn

Câu 21 Trắc nghiệm

Tích các nghiệm của phương trình $\sqrt {x + 2}  + \sqrt {5 - 2{\rm{x}}}  = \sqrt {2{\rm{x}}}  + \sqrt {7 - 3{\rm{x}}} $ bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Điều kiện: $\left\{ \begin{array}{l}x + 2 \ge 0\\5 - 2x \ge 0\\2{\rm{x}} \ge 0\\7 - 3{\rm{x}} \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 2\\x \le \dfrac{5}{2}\\x \ge 0\\x \le \dfrac{7}{3}\end{array} \right. \Leftrightarrow 0 \le x \le \dfrac{7}{3}$

Phương trình $\Leftrightarrow{\left( {\sqrt {x + 2}  + \sqrt {5 - 2{\rm{x}}} } \right)^2} = {\left( {\sqrt {2{\rm{x}}}  + \sqrt {7 - 3{\rm{x}}} } \right)^2}$

$\begin{array}{l} \Leftrightarrow x + 2 + 5 - 2{\rm{x}} + 2\sqrt {(x + 2)(5 - 2{\rm{x}})}  = 2{\rm{x}} + 7 - 3{\rm{x}} + 2\sqrt {2{\rm{x}}\left( {7 - 3{\rm{x}}} \right)} \\ \Leftrightarrow 2\sqrt {(x + 2)(5 - 2{\rm{x}})}  = 2\sqrt {2{\rm{x}}\left( {7 - 3{\rm{x}}} \right)} \\ \Leftrightarrow (x + 2)(5 - 2{\rm{x}}) = 2{\rm{x}}\left( {7 - 3{\rm{x}}} \right)\\ \Leftrightarrow  - 2{{\rm{x}}^2} + x + 10 = 14{\rm{x}} - 6{{\rm{x}}^2}\\ \Leftrightarrow  - 4{{\rm{x}}^2} + 13{\rm{x}} - 10 = 0\end{array}$

Do đó tích các nghiệm của phương trình là $\dfrac{{ - 10}}{{ - 4}} = \dfrac{5}{2}$

Câu 22 Trắc nghiệm

Số nghiệm của phương trình$\sqrt {{{\rm{x}}^4} - 2{{\rm{x}}^2} + 1}  = 1 - x$ là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Điều kiện: $1 - x \ge 0 \Leftrightarrow x \le 1$

Ta có:

$\begin{array}{l}\sqrt {{x^4} - 2{{\rm{x}}^2} + 1}  = 1 - x \\ \Leftrightarrow \sqrt {{{\left( {{{\rm{x}}^2} - 1} \right)}^2}}  = 1 - x\\ \Leftrightarrow {\left( {{x^2} - 1} \right)^2} = {\left( {1 - x} \right)^2}\\ \Leftrightarrow {\left( {x - 1} \right)^2}.{\left( {x + 1} \right)^2} = {\left( {1 - x} \right)^2}\\ \Leftrightarrow {\left( {x - 1} \right)^2}\left( {{x^2} + 2{\rm{x}} + 1 - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\{x^2} + 2{\rm{x}} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\,\,\,\,\,\,\,\left( {tm} \right)\\x = 0\,\,\,\,\,\,\,\left( {tm} \right)\\x =  - 2\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}$

Vậy phương trình có $3$  nghiệm

Câu 23 Trắc nghiệm

Tập nghiệm của phương trình $\sqrt {x + 3}  - \sqrt {6 - x}  = 3 + \sqrt {\left( {x + 3} \right)\left( {6 - x} \right)} $là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện: $\left\{ \begin{array}{l}x + 3 \ge 0\\6 - x \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 3\\x \le 6\end{array} \right. \Leftrightarrow  - 3 \le x \le 6$

Đặt: $\sqrt {x + 3}  - \sqrt {6 - x}  = t\,\,$

$\begin{array}{l} \Leftrightarrow {\left( {\sqrt {x + 3}  - \sqrt {6 - x} } \right)^2} = {t^2} \Leftrightarrow x + 3 + 6 - x - 2\sqrt {\left( {x + 3} \right)\left( {6 - x} \right)}  = {t^2}\\ \Leftrightarrow 2\sqrt {\left( {x + 3} \right)\left( {6 - x} \right)}  = 9 - {t^2} \Leftrightarrow \sqrt {\left( {x + 3} \right)\left( {6 - x} \right)}  = \dfrac{{9 - {t^2}}}{2}\,\,\,\left( { - 3 \le t \le 3} \right)\end{array}$

Khi đó, phương trình trở thành: $t = 3 + \dfrac{{9 - {t^2}}}{2} \Leftrightarrow {t^2} + 2t - 15 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\,\,\,\,\,\,\,\,\left( {tm} \right)\\t =  - 5\,\,\,\left( {ktm} \right)\end{array} \right.$

Với $t = 3 \Rightarrow \sqrt {x + 3}  - \sqrt {6 - x}  = 3$\( \Leftrightarrow \sqrt {x + 3}  = 3 + \sqrt {6 - x} \) \( \Leftrightarrow x + 3 = 9 + 6\sqrt {6 - x}  + 6 - x\) \( \Leftrightarrow 2x - 12 = 6\sqrt {6 - x} \) \( \Leftrightarrow x - 6 = 3\sqrt {6 - x} \) \( \Leftrightarrow \left\{ \begin{array}{l}x - 6 \ge 0\\{x^2} - 12x + 36 = 9\left( {6 - x} \right)\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x \ge 6\\{x^2} - 3x - 18 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x \ge 6\\\left[ \begin{array}{l}x =  - 3\left( l \right)\\x = 6\left( {tm} \right)\end{array} \right.\end{array} \right. \Leftrightarrow x = 6\)

 Vậy tập nghiệm của phương trình là $S = \left\{ 6 \right\}$

Câu 24 Trắc nghiệm

Số nghiệm của phương trình ${x^2} - 6{\rm{x}} + 9 = 4\sqrt {{x^2} - 6{\rm{x}} + 6} $ là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Điều kiện: ${x^2} - 6{\rm{x}} + 6 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le 3 - \sqrt 3 \\x \ge 3 + \sqrt 3 \end{array} \right.$

Đặt: $\sqrt {{x^2} - 6{\rm{x}} + 6}  = t\,\,\,\left( {t \ge 0} \right) $ $\Leftrightarrow {x^2} - 6{\rm{x}} + 6 = {t^2} $ $\Leftrightarrow {x^2} - 6{\rm{x}} + 9 = {t^2} + 3$

Khi đó, phương trình trở thành: $ \Leftrightarrow {t^2} + 3 = 4t \Leftrightarrow {t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\,\left( {tm} \right)\\t = 3\,\,\,\,\left( {tm} \right)\end{array} \right.$

+) Với $t = 1$ $ \Rightarrow {x^2} - 6{\rm{x}} + 6 = 1$ $ \Leftrightarrow {x^2} - 6{\rm{x}} + 5 = 0 $ $\Leftrightarrow \left[ \begin{array}{l}x = 1\,\,\,\,\left( {tm} \right)\\x = 5\,\,\,\,\left( {tm} \right)\end{array} \right.$

+) Với $t = 3$ $ \Rightarrow {x^2} - 6{\rm{x}} + 6 = 9 $ $\Leftrightarrow {x^2} - 6x - 3 = 0 $ $\Leftrightarrow \left[ \begin{array}{l}x = 3 + 2\sqrt 3 \,\,\,\,\left( {tm} \right)\\x = 3 - 2\sqrt 3 \,\,\,\,\,\left( {tm} \right)\end{array} \right.$

Vậy phương trình có $4$  nghiệm.

Câu 25 Trắc nghiệm

Số nghiệm của phương trình $\sqrt[3]{{x + 24}} + \sqrt {12 - x}  = 6$là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện: $12 - x \ge 0 \Leftrightarrow x \le 12$

Đặt $\sqrt[3]{{x + 24}} = u;\,\,\sqrt {12 - x}  = v \Rightarrow $Hệ phương trình: $\left\{ \begin{array}{l}u + v = 6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{u^3} + {v^2} = 36\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.$

Từ $(1)\Rightarrow v = 6 – u.$ Thay vào $(2) $ ta được:

${u^3} + {\left( {6 - u} \right)^2} = 36 \Leftrightarrow {u^3} + {u^2} - 12u = 0 \Leftrightarrow u\left( {{u^2} + u - 12} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}u = 0\\u = 3\\u =  - 4\end{array} \right.$

+) Với $u = 0 $ $\Leftrightarrow \sqrt[3]{{x + 24}} = 0 $ $\Leftrightarrow x =  - 24\,\,\,\left( {tm} \right)$

+) Với $u = 3$ $ \Leftrightarrow \sqrt[3]{{x + 24}} = 3 $ $\Leftrightarrow x + 24 = 27 $ $\Leftrightarrow x = 3\,\,\,\left( {tm} \right)$

+) Với $u =  - 4 \Leftrightarrow \sqrt[3]{{x + 24}} =  - 4 \Leftrightarrow x + 24 =  - 64 \Leftrightarrow x =  - 88\,\,\,\,\,\left( {tm} \right)$

Vậy phương trình có $3$  nghiệm.

Câu 26 Trắc nghiệm

Tổng bình phương các nghiệm của phương trình $\dfrac{2}{{\sqrt {x + 1}  + \sqrt {3 - x} }} = 1 + \sqrt {3 + 2{\rm{x}} - {x^2}} $ là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện: $\left\{ \begin{array}{l}x + 1 \ge 0\\3 - x \ge 0\\\sqrt {x + 1}  + \sqrt {3 - x}  \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\x \le 3\end{array} \right. \Leftrightarrow  - 1 \le x \le 3$

Đặt: $\sqrt {x + 1}  + \sqrt {3 - x}  = t(t > 0)$

$\begin{array}{l} \Leftrightarrow x + 1 + 3 - x + 2\sqrt {\left( {x + 1} \right)\left( {3 - x} \right)}  = {t^2}\\ \Leftrightarrow \sqrt {\left( {x + 1} \right)\left( {3 - x} \right)}  = \dfrac{{{t^2} - 4}}{2}\end{array}$

Khi đó, phương trình trở thành: $\dfrac{2}{t} = 1 + \dfrac{{{t^2} - 4}}{2} \Leftrightarrow \dfrac{2}{t} = \dfrac{{{t^2} - 2}}{2}$

$\begin{array}{l} \Leftrightarrow {t^3} - 2t - 4 = 0\\ \Leftrightarrow \left( {t - 2} \right)\left( {{t^2} + 2t + 2} \right) = 0 \Leftrightarrow t = 2\end{array}$

+) Với $t = 2$ $ \Leftrightarrow \sqrt {\left( {x + 1} \right)\left( {3 - x} \right)}  = 0 \Leftrightarrow \left( {x + 1} \right)\left( {3 - x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\,\,\,\,\left( {tm} \right)\\x = 3\,\,\,\,\,\,\,\,\left( {tm} \right)\end{array} \right.$

Tổng bình phương các nghiệm là $10$ .

Câu 27 Trắc nghiệm

Tổng hai nghiệm của phương trình  $5\sqrt x  + \dfrac{5}{{2\sqrt x }} = 2{\rm{x}} + \dfrac{1}{{2{\rm{x}}}} + 4$ là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Điều kiện: $x > 0$

Ta có: $5\sqrt x  + \dfrac{5}{{2\sqrt x }} = 2{\rm{x}} + \dfrac{1}{{2{\rm{x}}}} + 4 \Leftrightarrow 5\left( {\sqrt x  + \dfrac{1}{{2\sqrt x }}} \right) = 2\left( {{\rm{x}} + \dfrac{1}{{{\rm{4x}}}}} \right) + 4$

Đặt $\sqrt x  + \dfrac{1}{{2\sqrt x }} = t\,\,\,\left( {t > 0} \right)$ $ \Leftrightarrow {t^2} = x + \dfrac{1}{{4x}} + 1 $ $\Leftrightarrow x + \dfrac{1}{{4x}} = {t^2} - 1$

Khi đó phương trình trở thành: $5t = 2\left( {{t^2} - 1} \right) + 4 $ $\Leftrightarrow 2{t^2} - 5t + 2 = 0 $ $\Leftrightarrow \left[ \begin{array}{l}t = 2\,\,\,\left( {tm} \right)\\t = \dfrac{1}{2}\,\,\,\left( {tm} \right)\end{array} \right.$                    

+) Với $t = \dfrac{1}{2} \Rightarrow x + \dfrac{1}{{4{\rm{x}}}} =  - \dfrac{3}{4} $ $\Leftrightarrow 4{{\rm{x}}^2}{\rm{  +  3x}} + 1 = 0$ (vô nghiệm)

+) Với $t = 2$ $ \Rightarrow x + \dfrac{1}{{4{\rm{x}}}} = 3 $ $\Leftrightarrow 4{{\rm{x}}^2} - 12{\rm{x}} + 1 = 0$ có hai nghiệm phân biệt.

Vậy tổng $2$ nghiệm của phương trình là: $3$

Câu 28 Trắc nghiệm

Tập nghiệm của phương trình $\sqrt {3{{\rm{x}}^2} + 6{\rm{x}} + 16}  + \sqrt {{{\rm{x}}^2} + 2{\rm{x}}}  = 2\sqrt {{{\rm{x}}^2} + 2{\rm{x}} + 4} $ là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Điều kiện: $\left\{ \begin{array}{l}3{{\rm{x}}^2} + 6{\rm{x}} + 16 \ge 0\\{x^2} + 2{\rm{x}} \ge 0\\{x^2} + 2{\rm{x}} + 4 \ge 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \le  - 2\\x \ge 0\end{array} \right.$

Đặt $t = \sqrt {{x^2} + 2x} \,\,\,\left( {t \ge 0} \right) \Leftrightarrow {t^2} = {x^2} + 2x \Leftrightarrow {t^2} = {x^2} + 2x$

Phương trình trở thành: $\sqrt {3{t^2} + 16}  + t = 2\sqrt {{t^2} + 4} $

                                       $\begin{array}{l} \Leftrightarrow 3{t^2} + 16 + {t^2} + 2t\sqrt {3{t^2} + 16}  = 4{t^2} + 16\\ \Leftrightarrow 2t\sqrt {3{t^2} + 16}  = 0 \Leftrightarrow t = 0\end{array}$            

+) Với $t = 0 \Leftrightarrow {x^2} + 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\end{array} \right.$

Vậy tập nghiệm của phương trình là : $S = \left\{ {0; - 2} \right\}$

Câu 29 Trắc nghiệm

Tổng các nghiệm của phương trình $4{x^2} - 12x - 5\sqrt {{4x^2} - 12x + 11}  + 15 = 0$ bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vì : $4{{\rm{x}}^2} - 12{\rm{x}} + 11 = 4{\left( {x - \dfrac{3}{2}} \right)^2} + 2 > 0,\forall x$ nên phương trình xác định với mọi $x$  

Đặt: $\sqrt {4{{\rm{x}}^2} - 12{\rm{x}} + 11}  = t(t \ge \sqrt 2 )$     

$\begin{array}{l} \Leftrightarrow 4{{\rm{x}}^2} - 12{\rm{x}} + 11 = {t^2}\\ \Leftrightarrow 4{{\rm{x}}^2} - 12{\rm{x}} + 15 = {t^2} + 4\end{array}$

Khi đó, phương trình trở thành: ${t^2} - 5t + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\,\,\left( {ktm} \right)\\t = 4\,\,\,\,\,\left( {tm} \right)\end{array} \right.$

+) Với $t = 4$ $ \Leftrightarrow 4{x^2} - 12x + 11 = 16 $ $\Leftrightarrow 4{x^2} - 12x - 5 = 0$

Tổng $2$ nghiệm của phương trình là $3$ .

Câu 30 Trắc nghiệm

Tập nghiệm của phương trình ${x^2} + 3{\rm{x}} + 1 = \left( {x + 3} \right)\sqrt {{x^2} + 1} $ là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: ${x^2} + 3{\rm{x}} + 1 = \left( {x + 3} \right)\sqrt {{x^2} + 1}  $ $\Leftrightarrow \left( {{x^2} + 1} \right) + 3\left( {x + 3} \right) - 9 = \left( {x + 3} \right)\sqrt {{x^2} + 1} $       

Đặt $\sqrt {{x^2} + 1}  = u\left( {u \ge 0} \right);x + 3 = v$

Phương trình trở thành:

${u^2} + 3v - 9 = uv \Leftrightarrow {u^2} + 3v - 9 - uv = 0 \Leftrightarrow \left( {{u^2} - 9} \right) - v(u - 3) = 0 \Leftrightarrow \left( {u - 3} \right)\left( {u + 3 - v} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}u = 3\,\,\,\left( {tm} \right)\\u + 3 - v = 0\end{array} \right.$

+) Với $u = 3 \Rightarrow \sqrt {{x^2} + 1}  = 9 $ $\Leftrightarrow {x^2} + 1 = 9 \Leftrightarrow x =  \pm 2\sqrt 2 $

+) Với $u + 3-v = 0$ $ \Rightarrow \sqrt {{x^2} + 1}  + 3 - (x + 3) = 0$ $ \Leftrightarrow \sqrt {{x^2} + 1}  = x \Leftrightarrow {x^2} + 1 = {x^2}$(vô nghiệm)

Vậy tập nghiệm của phương trình là: $S = \left\{ { \pm 2\sqrt 2 } \right\}$

Câu 31 Trắc nghiệm

Cho phương trình $2{{\rm{x}}^2} + 3{\rm{x}} - 14 = 2\sqrt[3]{{2{{\rm{x}}^2} + 3{\rm{x}} - 10}}$ . Giả sử ${x_1},{x_2}$  là 2 nghiệm của phương trình. Tính giá trị biểu thức $A = \sqrt {{x_1}^2 + {x_2}^2 - 4{{\rm{x}}_1}.{x_2}} $

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Đặt $t = \sqrt[3]{{2{{\rm{x}}^2} + 3{\rm{x}} - 10}} \Leftrightarrow {t^3} = 2{{\rm{x}}^2} + 3{\rm{x}} - 10 \Leftrightarrow {t^3} + 10 = 2{{\rm{x}}^2} + 3{\rm{x}}$

Khi đó phương trình trở thành: ${t^3} + 10 - 14 = 2t \Leftrightarrow {t^3} - 2t - 4 = 0$

$ \Leftrightarrow \left( {t - 2} \right)\left( {{t^2} + 2t + 2} \right) = 0 \Leftrightarrow t = 2$ (Vì ${t^2} + 2t + 2= 0$ vô nghiệm)

+) Với $t = 2 \Rightarrow 2{{\rm{x}}^2} + 3x = 18 $ $\Leftrightarrow 2{{\rm{x}}^2} + 3x - 18 = 0\,\,\left( * \right)\,\,\,\left( {tm} \right)$

Giả sử ${x_1},{x_2}$  là hai nghiệm của phương trình (*)

Theo Vi – et, ta có : $\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{3}{2}\\{x_1}.{x_2} =  - 9\end{array} \right.$

$ \Rightarrow A = \sqrt {{x_1}^2 + {x_2}^2 - 4{{\rm{x}}_1}{x_2}}  = \sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} - 6{x_1}.{x_2}}  = \sqrt {\dfrac{9}{4} + 54}  = \sqrt {\dfrac{{225}}{4}}  = \dfrac{{15}}{2}$

Câu 32 Trắc nghiệm

Số nghiệm của phương trình $3\sqrt {x + 2}  - 6\sqrt {2 - x}  + 4\sqrt {4 - {x^2}}  = 10 - 3{\rm{x}}$

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện: $\left\{ \begin{array}{l}x + 2 \ge 0\\2 - x \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 2\\x \le 2\end{array} \right. \Leftrightarrow  - 2 \le x \le 2$

Đặt: $t = 3\sqrt {x + 2}  - 6\sqrt {2 - x} $

$\begin{array}{l} \Leftrightarrow {t^2} = 9\left( {x + 2} \right) + 36\left( {2 - x} \right) - 36\sqrt {4 - {x^2}} \\ \Leftrightarrow {t^2} = 9\left( {x + 2 + 8 - 4x - 4\sqrt {4 - {x^2}} } \right)\\ \Leftrightarrow {t^2} = 9\left( {10 - 3x - 4\sqrt {4 - {x^2}} } \right)\\3\sqrt {x + 2}  - 6\sqrt {2 - x}  + 4\sqrt {4 - {x^2}}  = 10 - 3{\rm{x}}\\ \Leftrightarrow 3\sqrt {x + 2}  - 6\sqrt {2 - x}  = 10 - 3x - 4\sqrt {4 - {x^2}} \\ \Rightarrow t = \dfrac{{{t^2}}}{9} \Leftrightarrow {t^2} = 9t \Leftrightarrow t\left( {t - 9} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 9\end{array} \right.\end{array}$

+) Với $t = 0 \Rightarrow 3\sqrt {x + 2}  - 6\sqrt {2 - x}  = 0 \Leftrightarrow 3\sqrt {x + 2}  = 6\sqrt {2 - x}  \Leftrightarrow x + 2 = 8 - 4x \Leftrightarrow x = \dfrac{6}{5}$

+) Với $t = 9 \Rightarrow 3\sqrt {x + 2}  - 6\sqrt {2 - x}  = 9 \Leftrightarrow \sqrt {x + 2}  = 3 + 2\sqrt {2 - x} $

                    $ \Leftrightarrow x + 2 = 9 + 8 - 4x + 12\sqrt {2 - x}  \Leftrightarrow 5x - 15 = 12\sqrt {2 - x} $

Điều kiện: $5{\rm{x}} - 15 \ge 0 \Leftrightarrow x \ge 3$(không thoả mãn $ - 2 \le x \le 2$)

Vậy phương trình có 1 nghiệm duy nhất \(x = \dfrac{6}{5}\)

Câu 33 Trắc nghiệm

Tổng bình phương các nghiệm của phương trình $\sqrt {4{{\rm{x}}^2} + x + 6}  = 4{\rm{x}} - 2 + 7\sqrt {x + 1} $ là:    

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện : $x + 1 \ge 0 \Leftrightarrow x \ge  - 1$

Ta có: $\sqrt {4{{\rm{x}}^2} + x + 6}  = 4{\rm{x}} - 2 + 7\sqrt {x + 1}  \Leftrightarrow \sqrt {4{{\rm{x}}^2} - 4x + 1 + 5{\rm{x}} + 5}  = 2(2{\rm{x}} - 1) + 7\sqrt {x + 1} $

$\begin{array}{l} \Leftrightarrow \sqrt {{{\left( {2{\rm{x}} - 1} \right)}^2} + 5\left( {{\rm{x}} + 1} \right)}  = 2\left( {2{\rm{x}} - 1} \right) + 7\sqrt {x + 1} \\ \Leftrightarrow \sqrt {{{\dfrac{{\left( {2{\rm{x}} - 1} \right)}}{{x + 1}}}^2} + 5}  = 2.\dfrac{{2{\rm{x}} - 1}}{{\sqrt {x + 1} }} + 7\end{array}$

Đặt $t = \dfrac{{2{\rm{x}} - 1}}{{\sqrt {x + 1} }}$, phương trình trở thành:$\sqrt {{t^2} + 5}  = 2t + 7$

Điều kiện $2t + 7 \ge 0 \Leftrightarrow t \ge  - \dfrac{7}{2}$

Phương trình:

$\begin{array}{l} \Leftrightarrow {t^2} + 5 = {\left( {2t + 7} \right)^2} \Leftrightarrow {t^2} + 5 = 4{t^2} + 28t + 49\\ \Leftrightarrow 3{t^2} + 28t + 44 = 0 \Leftrightarrow \left[ \begin{array}{l}t =  - 2\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\t =  - \dfrac{{22}}{3}\,\,\,\,\,\,\left( {ktm} \right)\end{array} \right.\end{array}$

+) Với $t =  - 2 \Leftrightarrow  - 2 = \dfrac{{2{\rm{x}} - 1}}{{\sqrt {x + 1} }}$ $ \Leftrightarrow \sqrt {x + 1}  =  - x + \dfrac{1}{2}\,\,\,\left( * \right)$

Điều kiện $ - x + \dfrac{1}{2} \ge 0 \Leftrightarrow x \le \dfrac{1}{2}$

Khi đó $\left( * \right) \Leftrightarrow x + 1 = {x^2} - x + \dfrac{1}{4} $ $\Leftrightarrow {x^2} - 2x - \dfrac{3}{4} $ $\Leftrightarrow 4{x^2} - 8x - 3 = 0\,\,\,\,\,\,\left( 1 \right)$

 Giả sử ${x_1},{x_2}$  là hai nghiệm của phương trình $(1)$

Theo Vi – et, ta có : $\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} =  - \dfrac{3}{4}\end{array} \right. \Rightarrow {x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}.{x_2} = 4 + \dfrac{3}{2} = \dfrac{{11}}{2}$

Câu 34 Trắc nghiệm

Tập nghiệm của phương trình $\sqrt {x + 5 - 4\sqrt {x + 1} }  + \sqrt {x + 2 - 2\sqrt {x + 1} }  = 1$ là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Điều kiện: $x + 1 \ge 0 \Leftrightarrow x \ge  - 1$

Ta có:

$\begin{array}{l}x + 5 - 4\sqrt {x + 1}  = x + 1 - 4\sqrt {x + 1}  + 4 = {\left( {\sqrt {x + 1}  - 2} \right)^2}\\x + 2 - 2\sqrt {x + 1}  = x + 1 - 2\sqrt {x + 1}  + 1 = {\left( {\sqrt {x + 1}  - 1} \right)^2}\end{array}$

Phương trình:

$\begin{array}{l}\sqrt {x + 5 - 4\sqrt {x + 1} }  + \sqrt {x + 2 - 2\sqrt {x + 1} }  = 1 \Leftrightarrow \sqrt {{{\left( {\sqrt {x + 1}  - 2} \right)}^2}}  + \sqrt {{{\left( {\sqrt {x + 1}  - 1} \right)}^2}}  = 1\\ \Leftrightarrow \left| {\sqrt {x + 1}  - 2} \right| + \left| {\sqrt {x + 1}  - 1} \right| = 1\,\,\,\,\,\left( 1 \right)\end{array}$

+) Trường hợp 1: Nếu $\sqrt {x + 1}  \ge 2 \Leftrightarrow x + 1 \ge 4 \Leftrightarrow x \ge 3$ thì: $\left\{ \begin{array}{l}\left| {\sqrt {x + 1}  - 2} \right| = \sqrt {x + 1}  - 2\\\left| {\sqrt {x + 1}  - 1} \right| = \sqrt {x + 1}  - 1\end{array} \right.$

$\left( 1 \right)\Leftrightarrow \sqrt {x + 1}  - 2 + \sqrt {x + 1}  - 1 = 1$ $ \Leftrightarrow \sqrt {x + 1}  = 2 \Leftrightarrow x + 1 = 4 \Leftrightarrow x = 3\left( {tm} \right)$

+) Trường hợp 2: Nếu $\sqrt {x + 1}  \le 1 \Leftrightarrow x + 1 \le 1 \Leftrightarrow x \le 0$ thì: $\left\{ \begin{array}{l}\left| {\sqrt {x + 1}  - 2} \right| = 2 - \sqrt {x + 1} \\\left| {\sqrt {x + 1}  - 1} \right| = 1 - \sqrt {x + 1} \end{array} \right.$

$\left( 1 \right) \Leftrightarrow 2 - \sqrt {x + 1}  + 1 - \sqrt {x + 1}  = 1 $ $\Leftrightarrow \sqrt {x + 1}  = 1 \Leftrightarrow x + 1 = 1 \Leftrightarrow x = 0\left( {tm} \right)$

+) Trường hợp 3: Nếu $1 < \sqrt {x + 1}  < 2$ $ \Leftrightarrow 1 < x + 1 < 4 $ $\Leftrightarrow 0 < x < 3$ thì: $\left\{ \begin{array}{l}\left| {\sqrt {x + 1}  - 2} \right| = 2 - \sqrt {x + 1} \\\left| {\sqrt {x + 1}  - 1} \right| = \sqrt {x + 1}  - 1\end{array} \right.$

$(1) \Leftrightarrow 2 - \sqrt {x + 1}  + \sqrt {x + 1}  - 1 = 1$

$ \Leftrightarrow 1 = 1$ (luôn đúng với $\forall x \in (0; 3)$)

Vậy tập nghiệm của phương trình là $[0; 3]$

Câu 35 Trắc nghiệm

Số nghiệm của phương trình $\sqrt {2{\rm{x}} - 1}  + {x^2} - 3{\rm{x + 1 = 0}}$ là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Điều kiện: $2{\rm{x}} - 1 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}$

Đặt $t = \sqrt {2{\rm{x}} - 1} \left( {t \ge 0} \right) \Rightarrow x = \dfrac{{{t^2} + 1}}{2}(*)$.Thay (*) vào phương trình, ta được:

$t + {\left( {\dfrac{{{t^2} + 1}}{2}} \right)^2} - 3\left( {\dfrac{{{t^2} + 1}}{2}} \right) + 1 = 0 \Leftrightarrow {t^4} - 4{t^2} + 4t - 1 = 0 \Leftrightarrow {\left( {t - 1} \right)^2}\left( {{t^2} + 2t - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\t = \sqrt 2  - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\t =  - \sqrt 2  - 1\,\,\,\,\,\,\,\,\,\left( {ktm} \right)\end{array} \right.$

+) Với $t = 1 \Rightarrow 1 = \sqrt {2{\rm{x}} - 1}  \Leftrightarrow x = 1$

+) Với  $t = \sqrt 2  - 1 \Rightarrow \sqrt 2  - 1 = \sqrt {2{\rm{x}} - 1}  \Leftrightarrow x = 2 - \sqrt 2 $

Vậy phương trình có 2 nghiệm

Câu 36 Trắc nghiệm

Gọi \(S\) là tập nghiệm của phương trình \(\sqrt {5{x^2} + 4x}  - \sqrt {{x^2} - 3x - 18}  = 5\sqrt x \). Số phần tử của \(S\) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\(\sqrt {5{x^2} + 4x}  - \sqrt {{x^2} - 3x - 18}  = 5\sqrt x \,\,\,\left( 1 \right)\)

(ĐK : \(\left\{ \begin{array}{l}5{x^2} + 4x \ge 0\\{x^2} - 3x - 18 \ge 0\\x \ge 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x \ge 0,x \le  - \dfrac{4}{5}\\x \ge 6,x \le  - 3\\x \ge 0\end{array} \right. \Leftrightarrow x \ge 6\))

Khi đó \(\left( 1 \right) \Leftrightarrow \sqrt {5{x^2} + 4x}  = 5\sqrt x  + \sqrt {{x^2} - 3x - 18} \)

\( \Leftrightarrow 5{x^2} + 4x = 25x + {x^2} - 3x - 18 + 10\sqrt x .\sqrt {{x^2} - 3x - 18} \)

\( \Leftrightarrow 4{x^2} - 18x + 18 = 10\sqrt {x\left( {{x^2} - 3x - 18} \right)} \)

\( \Leftrightarrow 2{x^2} - 9x + 9 = 5\sqrt {x\left( {x - 6} \right)\left( {x + 3} \right)} \)

\( \Leftrightarrow 2{x^2} - 12x + 3x + 9 = 5\sqrt {\left( {{x^2} - 6x} \right)\left( {x + 3} \right)} \)

\( \Leftrightarrow 2\left( {{x^2} - 6x} \right) + 3\left( {x + 3} \right) = 5\sqrt {{x^2} - 6x} .\sqrt {x + 3} \)

Dễ thấy \(x = 6\) không là nghiệm phương trình nên với \(x > 6\) ta chia cả hai vế cho \({x^2} - 6x > 0\) ta được :

\(2 + 3.\dfrac{{x + 3}}{{{x^2} - 6x}} = 5.\dfrac{{\sqrt {x + 3} }}{{\sqrt {{x^2} - 6x} }}\,\,\left( 2 \right)\)

Đặt \(\dfrac{{\sqrt {x + 3} }}{{\sqrt {{x^2} - 6x} }} = t > 0\) thì \(\left( 2 \right)\) trở thành \(3{t^2} - 5t + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\left( {TM} \right)\\t = \dfrac{2}{3}\left( {TM} \right)\end{array} \right.\)

+ Nếu \(t = 1\) thì \(\sqrt {x + 3}  = \sqrt {{x^2} - 6x} \)\( \Leftrightarrow x + 3 = {x^2} - 6x\)\( \Leftrightarrow {x^2} - 7x - 3 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{7 + \sqrt {61} }}{2}\left( {TM} \right)\\x = \dfrac{{7 - \sqrt {61} }}{2}\left( L \right)\end{array} \right.\)

+ Nếu $t = \dfrac{2}{3}$ thì \(\sqrt {x + 3}  = \dfrac{2}{3}\sqrt {{x^2} - 6x} \) \( \Leftrightarrow x + 3 = \dfrac{4}{9}\left( {{x^2} - 6x} \right)\) \( \Leftrightarrow 4{x^2} - 33x - 27 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 9\left( {TM} \right)\\x =  - \dfrac{3}{4}\left( L \right)\end{array} \right.\)

Vậy phương trình đã cho có tập nghiệm \(S = \left\{ {\dfrac{{7 + \sqrt {61} }}{2};9} \right\}\) hay \(S\) có \(2\) phần tử.

Câu 37 Trắc nghiệm

Số giá trị nguyên của tham số \(m\) để phương trình \(\sqrt {{x^2} - mx + 3}  = \sqrt {2x - 1} \) có hai nghiệm phân biệt là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Bước 1:

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\sqrt {{x^2} - mx + 3}  = \sqrt {2x - 1} \\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - mx + 3 = 2x - 1\\2x - 1 \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - \left( {m + 2} \right)x + 4 = 0\\x \ge \dfrac{1}{2}\end{array} \right.\end{array}\)

Bước 2:

Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) có 2 nghiệm phân biệt thỏa mãn \({x_1} > {x_2} \ge \dfrac{1}{2}\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\Delta  > 0\\S = {x_1} + {x_2} > 1\\\left( {{x_1} - \dfrac{1}{2}} \right)\left( {{x_2} - \dfrac{1}{2}} \right) \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m + 2} \right)^2} - 16 > 0\\m + 2 > 1\\4 - \dfrac{1}{2}\left( {m + 2} \right) + \dfrac{1}{4} \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m + 2 > 4\\m + 2 <  - 4\end{array} \right.\\m >  - 1\\m \le \dfrac{{13}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 2\\m <  - 6\end{array} \right.\\m >  - 1\\m \le \dfrac{{13}}{2}\end{array} \right. \Leftrightarrow 2 < m \le \dfrac{{13}}{2}\end{array}\)

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {3;4;5;6} \right\}\).

Vậy có 4 giá trị của \(m\) thỏa mãn yêu cầu bài toán.