Ta có: \(\sin \alpha + \cos \alpha = 1 \Leftrightarrow \sin \alpha .\dfrac{{\sqrt 2 }}{2} + \cos \alpha .\dfrac{{\sqrt 2 }}{2} = \dfrac{{\sqrt 2 }}{2} \Leftrightarrow \sin \left( {\alpha + \dfrac{\pi }{4}} \right) = \dfrac{{\sqrt 2 }}{2}\)
Ta có: \(0 < \alpha < \dfrac{\pi }{2} \Rightarrow \left\{ \begin{array}{l}\cos \alpha > 0\\\sin \alpha > 0\end{array} \right.\)
\(\sqrt {\dfrac{{1 + \sin \alpha }}{{1 - \sin \alpha }}} + \sqrt {\dfrac{{1 - \sin \alpha }}{{1 + \sin \alpha }}} \)\( = \dfrac{{1 + \sin \alpha + 1 - \sin \alpha }}{{\sqrt {1 - {{\sin }^2}\alpha } }} = \dfrac{2}{{\sqrt {{{\cos }^2}\alpha } }}\)\( = \dfrac{2}{{\cos \alpha }}\)
Cho hai tam giác vuông \(OAB\) và \(OCD\) như hình vẽ. Biết \(OB = CD = a\), \(AB = OD = b.\) Tính \(\cos \angle AOC\) theo \(a\) và \(b\).
Xét \(\Delta OAB\) và \(\Delta COD\) có:
\(\begin{array}{l}\angle OBA = \angle CDO = {90^o}\left( {gt} \right)\\B = CD\left( {gt} \right)\\AB = OD\left( {gt} \right)\\ \Rightarrow \Delta OAB = \Delta COD\left( {c - g - c} \right)\end{array}\)
\( \Rightarrow OA = OC\) (2 cạnh tương ứng)
\( \Rightarrow OA.OC = O{A^2}\)\( = O{B^2} + A{B^2} = {a^2} + {b^2}\) (Pytago)
\(\cos \angle AOC = \cos \left( {\angle AOB - \angle COD} \right)\)\( = \cos \angle AOB\cos \angle COD\)\( + \sin \angle AOB\sin \angle COD\)
\( = \dfrac{{OB}}{{OA}}.\dfrac{{OD}}{{OC}} + \dfrac{{AB}}{{OA}}.\dfrac{{CD}}{{OC}}\)\( = \dfrac{{OB.OD + AB.CD}}{{OA.OC}} = \dfrac{{ab + ab}}{{{a^2} + {b^2}}} = \dfrac{{2ab}}{{{a^2} + {b^2}}}\)
Ta có: \(\pi < \alpha < \dfrac{{3\pi }}{2} \Rightarrow \sin \alpha < 0\)
\( \Rightarrow \sin \alpha = - \sqrt {1 - {{\cos }^2}\alpha } = - \sqrt {1 - \dfrac{9}{{25}}} = - \dfrac{4}{5}\)
\(\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}.\sin \dfrac{{a - b}}{2}\)
Vậy công thức D sai.
\(\begin{array}{l}A = \dfrac{{\sin 6x + \sin 7x + \sin 8x}}{{\cos 6x + \cos 7x + \cos 8x}} = \dfrac{{\left( {\sin 8x + \sin 6x} \right) + \sin 7x}}{{\left( {\cos 8x + \cos 6x} \right) + \cos 7x}}\\ = \dfrac{{2\sin 7x.\cos x + \sin 7x}}{{2\cos 7x.\cos x + \cos 7x}} = \dfrac{{\sin 7x\left( {2\cos x + 1} \right)}}{{\cos 7x\left( {2\cos x + 1} \right)}} = \dfrac{{\sin 7x}}{{\cos 7x}} = \tan 7x.\end{array}\)
Cho $\cos \alpha {\rm{ = }}\dfrac{3}{4};\sin \alpha > 0$ . Tính \(\cos 2\alpha ,\sin \alpha \)
$\begin{array}{l}\cos \alpha =\dfrac{3}{4};\sin \alpha > 0 \Rightarrow {\sin ^2}\alpha = 1 - \dfrac{9}{{16}} = \dfrac{7}{{16}} \Rightarrow \sin \alpha = \dfrac{{\sqrt 7 }}{4}\\{\cos 2\alpha} = 1 - 2{\sin ^2}\alpha = 1 - 2.\dfrac{7}{{16}} = \dfrac{1}{8}\end{array}$
Cho ${\rm{cos}}\alpha {\rm{ = }}\dfrac{3}{4};\sin \alpha > 0$; ${\rm{sin}}\beta {\rm{ = }}\dfrac{3}{4};cos\beta < 0$ Tính $\cos \left( {\alpha + \beta } \right)$
${\rm{cos}}\alpha {\rm{ = }}\dfrac{3}{4};\sin \alpha > 0 \Rightarrow {\sin ^2}\alpha = 1 - \dfrac{9}{{16}} = \dfrac{7}{{16}} \Rightarrow \sin \alpha = \dfrac{{\sqrt 7 }}{4}$
${\rm{sin}}\beta {\rm{ = }}\dfrac{3}{4};cos\beta < 0 \Rightarrow co{s^2}\beta = 1 - \dfrac{9}{{16}} = \dfrac{7}{{16}} \Rightarrow cos\beta = - \dfrac{{\sqrt 7 }}{4}$
$\cos \left( {\alpha + \beta } \right) = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \dfrac{3}{4}.\left( { - \dfrac{{\sqrt 7 }}{4}} \right) - \dfrac{3}{4}.\left( {\dfrac{{\sqrt 7 }}{4}} \right) = - \dfrac{{3\sqrt 7 }}{8}$
Cho \(\cos \alpha = m\) . Tính \({\sin ^2}\dfrac{\alpha }{2}\)
\({\sin ^2}\dfrac{\alpha }{2} = \dfrac{{1 - \cos \alpha }}{2} = \dfrac{{1 - m}}{2}\)
Thu gọn biểu thức \(\dfrac{{\sin \alpha + \sin 2\alpha }}{{1 + \cos \alpha + \cos 2\alpha }}\) ta được kết quả:
\(\dfrac{{\sin \alpha + \sin 2\alpha }}{{1 + \cos \alpha + \cos 2\alpha }} = \dfrac{{\sin \alpha + 2\sin \alpha \cos \alpha }}{{1 + \cos \alpha + 2{{\cos }^2}\alpha - 1}} = \dfrac{{\sin \alpha \left( {1 + 2\cos \alpha } \right)}}{{\cos \alpha \left( {1 + 2\cos \alpha } \right)}} = \tan \alpha \)
Thu gọn \(A = {\sin ^2}\alpha + {\sin ^2}\beta + 2\sin \alpha \sin \beta .\cos \left( {\alpha + \beta } \right)\) ta được:
$A = {\sin ^2}\alpha + {\sin ^2}\beta $ $+ 2\sin \alpha \sin \beta .\cos \left( {\alpha + \beta } \right)$
$= {\sin ^2}\alpha + {\sin ^2}\beta $ $+ 2\sin \alpha \sin \beta .\left( {\cos \alpha .\cos\beta - \sin \alpha .\sin\beta } \right)$
$= {\sin ^2}\alpha + {\sin ^2}\beta - 2{\sin ^2}\alpha {\sin ^2}\beta $ $ + 2\sin \alpha \sin \beta \cos \alpha .\cos\beta$
$= {\sin ^2}\alpha \left( {1 - {{\sin }^2}\beta } \right) + {\sin ^2}\beta \left( {1 - {{\sin }^2}\alpha } \right) + 2\sin \alpha \sin \beta \cos \alpha .\cos\beta$
$= {\sin ^2}\alpha {\cos ^2}\beta + {\sin ^2}\beta {\cos ^2}\alpha $ $+ 2\sin \alpha \sin \beta \cos \alpha .\cos\beta$
$= {\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right)^2} = {\sin ^2}\left( {\alpha + \beta } \right)$
Biết \(\cos \alpha + \cos \beta = m;\sin \alpha + \sin \beta = n.\) Tính \(\cos \left( {\alpha - \beta } \right)\) theo m và n.
Ta có:
\(\cos \alpha + \cos \beta = m;\sin \alpha + \sin \beta = n\)
\( \Rightarrow {m^2} + {n^2}\) \( = {\left( {\cos \alpha + \cos \beta } \right)^2} + {\left( {\sin \alpha + \sin \beta } \right)^2}\)
\( = {\cos ^2}\alpha + 2\cos \alpha \cos \beta + {\cos ^2}\beta \) \( + {\sin ^2}\alpha + 2\sin \alpha \sin \beta + {\sin ^2}\beta \)
$ = \left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) + \left( {{{\cos }^2}\beta + {{\sin }^2}\beta } \right)$ $ + 2\left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right)$
\( = 1 + 1 + 2\cos \left( {\alpha - \beta } \right)\) \( = 2 + 2\cos \left( {\alpha - \beta } \right)\)
Do đó \(\cos \left( {\alpha - \beta } \right) = \dfrac{{{m^2} + {n^2} - 2}}{2}\)
Biết $\cos \left( {\alpha + \beta } \right) = 0$ thì $\sin \left( {\alpha + 2\beta } \right)$ bằng:
Ta có:
$\sin\left( {\alpha + 2\beta } \right) = \sin \alpha .\cos 2\beta + \cos \alpha .\sin 2\beta$
$= \sin \alpha .\left( {1 - 2{{\sin }^2}\beta } \right) + 2\cos \alpha .\sin \beta \cos \beta$
$= \sin \alpha $ $ + 2\sin\beta \left( {\cos \alpha .\cos\beta - \sin \alpha .\sin\beta } \right)$
$= \sin \alpha + 2\sin\beta \cos \left( {\alpha + \beta } \right) $
$= \sin \alpha$
Tính \(\dfrac{{2\sin \alpha + 3\cos \alpha }}{{4\sin \alpha - 5\cos \alpha }}\) biết \(\tan \alpha = 3\).
Ta có:
\(\dfrac{{2\sin \alpha + 3\cos \alpha }}{{4\sin \alpha - 5\cos \alpha }} = \dfrac{{2\tan \alpha + 3}}{{4\tan \alpha - 5}} = \dfrac{{2.3 + 3}}{{4.3 - 5}} = \dfrac{9}{7}\)
Tính \(A = \cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\)
\(\begin{array}{l}A\sin \dfrac{{2\pi }}{9} \\= \sin \dfrac{{2\pi }}{9}\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} \\ = \frac{1}{2}.2\sin \frac{{2\pi }}{9}\cos \frac{{2\pi }}{9}\cos \frac{{4\pi }}{9}\cos \frac{{8\pi }}{9}\\= \dfrac{1}{2}\sin \dfrac{{4\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \frac{1}{2}.\frac{1}{2}.2\sin \frac{{4\pi }}{9}\cos \frac{{4\pi }}{9}\cos \frac{{8\pi }}{9}\\= \dfrac{1}{4}\sin \dfrac{{8\pi }}{9}\cos \dfrac{{8\pi }}{9} \\ = \frac{1}{4}.\frac{1}{2}.2\sin \frac{{8\pi }}{9}\cos \frac{{8\pi }}{9}\\= \dfrac{1}{8}\sin \dfrac{{16\pi }}{9} \\= \dfrac{1}{8}\sin \left( {2\pi - \dfrac{{2\pi }}{9}} \right) \\= - \dfrac{1}{8}\sin \dfrac{{2\pi }}{9}\\ \Rightarrow A = \dfrac{{ - 1}}{8}\end{array}\)
Tính \(A = \dfrac{{\sin \dfrac{\pi }{9} + \sin \dfrac{{5\pi }}{9}}}{{\cos \dfrac{\pi }{9} + \cos \dfrac{{5\pi }}{9}}}\)
Ta có \(A = \dfrac{{\sin \dfrac{\pi }{9} + \sin \dfrac{{5\pi }}{9}}}{{\cos \dfrac{\pi }{9} + \cos \dfrac{{5\pi }}{9}}} = \dfrac{{2\sin \left( {\dfrac{\pi }{3}} \right)\cos \left( {\dfrac{{2\pi }}{9}} \right)}}{{2\cos \left( {\dfrac{\pi }{3}} \right)\cos \left( {\dfrac{{2\pi }}{9}} \right)}} = \tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3 \)
Tính $4\cos {15^0}\cos {24^0}\cos {21^0} - \cos {\rm{1}}{{\rm{2}}^0} - \cos {18^0}$
Ta có
$\begin{array}{l}4\cos {15^0}\cos {24^0}\cos {21^0} - \cos {\rm{1}}{{\rm{2}}^0} - \cos {18^0}\\ = 2\cos {15^0}\left( {\cos \left( {{{24}^0} + {{21}^0}} \right) + \cos \left( {{{24}^0} - {{21}^0}} \right)} \right) - 2\cos \left( {\dfrac{{{\rm{1}}{{\rm{2}}^0} + 18{}^0}}{2}} \right)\cos \left( {\dfrac{{{{12}^0} - {{18}^0}}}{2}} \right)\\ = 2\cos {15^0}\left( {\cos {{45}^0} + \cos {3^0}} \right) - 2\cos {15^0}\cos {3^0}\\ = 2\cos {15^0}.\cos {45^0} = \cos {60^0} + \cos {30^0} = \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}\end{array}$
Tính \(\dfrac{{\sin \alpha + \sin \beta c{\rm{os}}\left( {\alpha + \beta } \right)}}{{\cos \alpha - \sin \beta \sin \left( {\alpha + \beta } \right)}}\)
Ta có
\(\dfrac{{\sin \alpha + \sin \beta \cos \left( {\alpha + \beta } \right)}}{{\cos \alpha - \sin \beta \sin \left( {\alpha + \beta } \right)}}\)\( = \dfrac{{\sin \alpha + \dfrac{1}{2}\left[ {\sin \left( {\alpha + 2\beta } \right) + \sin \left( { - \alpha } \right)} \right]}}{{\cos \alpha + \dfrac{1}{2}\left[ {\cos \left( {\alpha + 2\beta } \right) - \cos \left( { - \alpha } \right)} \right]}}\) \( = \dfrac{{\sin \alpha + \dfrac{1}{2}\left[ {\sin \left( {\alpha + 2\beta } \right) - \sin \alpha } \right]}}{{\cos \alpha + \dfrac{1}{2}\left[ {\cos \left( {\alpha + 2\beta } \right) - \cos \alpha } \right]}}\)\( = \dfrac{{\sin \alpha + \dfrac{1}{2}\sin \left( {\alpha + 2\beta } \right) - \dfrac{1}{2}\sin \alpha }}{{\cos \alpha + \dfrac{1}{2}\cos \left( {\alpha + 2\beta } \right) - \dfrac{1}{2}\cos \alpha }}\)\( = \dfrac{{\dfrac{1}{2}\sin \alpha + \dfrac{1}{2}\sin \left( {\alpha + 2\beta } \right)}}{{\dfrac{1}{2}\cos \alpha + \dfrac{1}{2}\cos \left( {\alpha + 2\beta } \right)}}\) \( = \dfrac{{\sin \left( {\alpha + 2\beta } \right) + \sin \alpha }}{{\cos \left( {\alpha + 2\beta } \right) + \cos \alpha }}\) \( = \dfrac{{2\sin \dfrac{{\left( {\alpha + 2\beta + \alpha } \right)}}{2}\cos \dfrac{{\left( {\alpha + 2\beta - \alpha } \right)}}{2}}}{{2\cos \dfrac{{\left( {\alpha + 2\beta + \alpha } \right)}}{2}\cos \dfrac{{\left( {\alpha + 2\beta - \alpha } \right)}}{2}}}\)\( = \dfrac{{2\sin \left( {\alpha + \beta } \right)\cos \beta }}{{2\cos \left( {\alpha + \beta } \right)\cos \beta }} = \tan \left( {\alpha + \beta } \right)\)
Giá trị của biểu thức \(\cos \dfrac{{5x}}{2}\cos \dfrac{{3x}}{2} + \sin \dfrac{{7x}}{2}\sin \dfrac{x}{2} - \cos x\cos 2x\) bằng
Thực nghiệm \(\cos \dfrac{{5\pi }}{2}\cos \dfrac{{3\pi }}{2} + \sin \dfrac{{7\pi }}{2}\sin \dfrac{\pi }{2} - \cos \pi \cos 2\pi = 0\)