Bất phương trình bậc hai

  •   
Câu 61 Trắc nghiệm

Để phương trình sau có 4 nghiệm phân biệt: |10x2x28|=x25x+a thì giá trị của tham số a là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét phương trình: |10x2x28|=x25x+a     (1)

a=|10x2x28|x2+5x

Xét f(x)=|10x2x28|x2+5x

={(10x2x28)x2+5xkhi10x2x280(10x2x28)x2+5xkhi10x2x28<0

={3x2+15x8khi1x4x25x+8khix1x4

Bảng biến thiên:

Dựa vào bảng biến thiên ta có phương trình (1) có 4 nghiệm phân biệt 4<a<434.

Câu 62 Trắc nghiệm

Để bất phương trình (x+5)(3x)x2+2x+a nghiệm đúng x[5;3], tham số a phải thỏa điều kiện:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

(x+5)(3x)x2+2x+ax22x+15x22xa

Đặt t=x22x+15, ta có bảng biến thiên

Suy ra t[0;4].

Bất phương trình đã cho thành t2+t15a.

Xét hàm f(t)=t2+t15 với t[0;4]

Ta có bảng biến thiên

Bất phương trình t2+t15a nghiệm đúng t[0;4] khi và chỉ khi a5.

Câu 63 Trắc nghiệm

Cho bất phương trình: x22x|x2|+ax6. Giá trị dương nhỏ nhất của a để bất phương trình có nghiệm gần nhất với số nào sau đây:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Trường hợp 1: x[2;+).

Khi đó bất phương trình đã cho trở thành:

x2(a+3)x+80ax+8x34232,65x[2;+).

Dấu  xảy ra khi x=22.

Trường hợp 2: x(;2).

Khi đó bất phương trình đã cho trở thành:

x2(a+1)x+40

axx2x+4

[ax2x+4xkhix(0;2)ax2x+4xkhix(;0).

[ax+4x1khix(0;2)(1)ax+4x1khix(;0)(2).

Giải (1) ta được a>3 (theo bất đẳng thức Cauchy).

Giải (2): ax+4x1a2x.4x1=5.

Vậy giá trị dương nhỏ nhất của a gần với số 2,6.

Câu 64 Trắc nghiệm

Bất phương trình: |x42x23|x25 có bao nhiêu nghiệm nghiệm nguyên?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đặt t=x20

Ta có |t22t3|t5.

Nếu t22t30[t1t3 thì ta có t23t+201t2 loại

Nếu t22t3<01<t<3 thì ta có t2+t+80[t1332t1+332 loại.

Câu 65 Trắc nghiệm

Để phương trình: |x+3|(x2)+m1=0có đúng một nghiệm, các giá trị của tham số mlà:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có |x+3|(x2)+m1=0m=1|x+3|(x2)

Xét hàm số y=1|x+3|(x2)

Ta có y={x2x+7khix3x2+x5khix<3

Bảng biến thiên của y=1|x+3|(x2)

Dựa vào bảng trên phương trình có đúng 1 nghiệm khi và chỉ khi[m<1m>294

Câu 66 Trắc nghiệm

Bất phương trình  (x+1)(x+4)<5x2+5x+28 có nghiệm là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

TXĐ: D=R

(x+1)(x+4)<5x2+5x+28x2+5x+45x2+5x+28<0(1)

Đặt x2+5x+28=t(t>0)

(1) trở thành: t25t24<03<t<8

x2+5x+28<64x2+5x36<09<x<4

Câu 67 Trắc nghiệm

Tìm m để bất phương trình xm2m(3x+1x3x23x+3)<0() có nghiệm .

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: (){3x+1x3x23x+3<0x>m2+m{(x2)(3x2+3x4)(x1)(x23)<0x>m2+m  ()

Bảng xét dấu:

Tập nghiệm của bất phương trình (x2)(3x2+3x4)(x1)(x23)<0S=(3576;3)(3+576;1)(3;2)

Do đó bất phương trình () có nghiệm khi và chỉ khi hệ bất phương trình() có nghiệm

m2+m<2m2+m2<02<m<1

Vậy 2<m<1 là giá trị cần tìm.

Câu 68 Trắc nghiệm

Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.

Tìm tập hợp các giá trị của x để diện tích viên gạch không vượt quá 208cm2.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: CAB+BAD+DAE=180o

CAB+EAD=90o

CAB+CBA=90o (ΔCAB vuông tại C)

CBA=EAD kết hợp AB=AD(gt)

ΔCAB=ΔEDA(chgn)CB=EA=xCA=CEEA=20x(cm)

Diện tích viên gạch là S=AB2=CB2+CA2=x2+(20x)2

S208x2+(20x)22082x240x+19208x12
Câu 69 Trắc nghiệm

Tập nghiệm của bất phương trình (2x+4x+1)(2x+1+x+4)x+3 là tập con của tập hợp nào sau đây?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

ĐKXĐ: x12

(2x+4x+1)(2x+1+x+4)x+3(2x+4x+1)(2x+4+x+1)(2x+1+x+4)(x+3)(2x+4+x+1)(x+3)(2x+1+x+4)(x+3)(2x+4+x+1)(x+3)(2x+1+x+42x+4x+1)02x+1+x+42x+4x+10(dox+3>0x12)2x+1+x+42x+4+x+13x+5+2(2x+1)(x+4)3x+5+2(2x+4)(x+1)(2x+1)(x+4)(2x+4)(x+1)2x2+9x+42x2+6x+43x0x0        

Kết hợp ĐKXĐ x[12;0](23;12)

Câu 70 Trắc nghiệm

Một nhà máy sản xuất bóng đèn trang trí với chi phí sản xuất 12 USD mỗi bóng đèn. Nếu giá bán mỗi bóng đèn là 20 USD thì nhà máy dự tính bán được 2000 bóng mỗi tháng. Nếu cứ tăng giá bán mỗi bóng đèn lên 1 USD thì số bóng đèn bán được mỗi tháng giảm đi 100 bóng đèn. Để nhà máy có lợi nhuận lớn nhất, giá bán mỗi bóng đèn là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Bước 1: Gọi x là số tiền tăng thêm của một tháng và biểu diễn số tiền bán 1 tháng theo x.

Số tiền bán mỗi bóng đèn là: 20+x(USD)

Số tiền lãi của 1 bóng đèn là: x+8 (USD)

Sau khi tăng x USD 1 bóng đèn thì số bóng bán được trong 1 tháng: 2000100x

Bước 2: Biểu diễn lợi nhuận theo x. Áp dụng BĐT Cauchy để tìm max.

L=(8+x).(2000100x)100L=(800+100x)(2000100x)(800+20002)2

Dấu “=” xảy ra 800+100x=2000100xx=6

Vậy số tiền mỗi bóng là 20+6=26 USD