Tích vô hướng của hai véc tơ

Câu 21 Trắc nghiệm

Cho tam giác \(ABC\) cân tại \(A\), \(\widehat A = {120^0}\) và \(AB = a\). Tính \(\overrightarrow {BA} .\overrightarrow {CA} \)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có \(\overrightarrow {BA} .\overrightarrow {CA}  = BA.CA.\cos {120^{\rm{o}}} =  - \dfrac{1}{2}{a^2}\).

Câu 22 Trắc nghiệm

Cho hình vuông \(ABCD\) tâm \(O\). Hỏi mệnh đề nào sau đây sai?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương án  A:\(\overrightarrow {OA}  \bot \overrightarrow {OB} \) suy ra \(\overrightarrow {OA} .\overrightarrow {OB}  = 0\) nên loại A.

Phương án  B: $\overrightarrow {OA} .\overrightarrow {OC} = \overrightarrow {OA} .\left( {\dfrac{1}{2}\overrightarrow {AC} } \right) = \dfrac{1}{2}\overrightarrow {OA} .\overrightarrow {AC} $ nên loại B.

Phương án  C:  \(\overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos {45^{\rm{o}}} \) \(= AB.AB\sqrt 2 .\dfrac{{\sqrt 2 }}{2} = A{B^2}\)

\(\overrightarrow {AB} .\overrightarrow {CD}  = AB.DC.\cos {180^0} =  - A{B^2}\)\( \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  \ne \overrightarrow {AB} .\overrightarrow {CD} \) nên chọn C.

Câu 23 Trắc nghiệm

Cho hình vuông \(ABCD\) cạnh \(a\). Hỏi mệnh đề nào sau đây sai?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương án  A: Do \(\overrightarrow {DA} .\overrightarrow {CB}  = DA.CB.\cos {0^0} = {a^2}\) nên loại A đúng, loại A.

Phương án  B: Do \(\overrightarrow {AB} .\overrightarrow {CD}  = AB.CD.\cos {180^{\rm{o}}} =  - {a^2}\) nên B đúng, loại B.

Phương án C: \(\left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right).\overrightarrow {AC}  = \overrightarrow {AC} .\overrightarrow {AC}  = A{C^2} = {\left( {a\sqrt 2 } \right)^2} = 2{a^2}\) nên C sai, chọn C.

Phương án D: \(\overrightarrow {AB} .\overrightarrow {AD}  + \overrightarrow {CB} .\overrightarrow {CD}  = 0\) đúng vì \(AB \bot AD,CB \bot CD\)

Câu 24 Trắc nghiệm

Cho hình thang vuông \(ABCD\) có đáy lớn \(AB = 4a\), đáy nhỏ \(CD = 2a\), đường cao \(AD = 3a\); \(I\) là trung điểm của \(AD\) . Câu nào sau đây sai?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Phương án  A:\(\overrightarrow {AB} .\overrightarrow {DC}  = AB.DC.\cos {0^{\rm{o}}} = 8{a^2}\)nên loại A.

Phương án  B:\(\overrightarrow {AD}  \bot \overrightarrow {CD} \) suy ra \(\overrightarrow {AD} .\overrightarrow {CD}  = 0\) nên loại B.

Phương án  C:\(\overrightarrow {AD}  \bot \overrightarrow {AB} \) suy ra \(\overrightarrow {AD} .\overrightarrow {AB}  = 0\)nên loại C.

Phương án  D:\(\overrightarrow {DA} \) không vuông góc với \(\overrightarrow {DB} \)suy ra \(\overrightarrow {DA} .\overrightarrow {DB}  \ne 0\) nên chọn D .

Câu 25 Trắc nghiệm

Cho hình thang vuông \(ABCD\) có đáy lớn \(AB = 4a\), đáy nhỏ \(CD = 2a\), đường cao \(AD = 3a\); \(I\) là trung điểm của \(AD\) . Khi đó \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {ID} \) bằng :

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có:

\(\left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right).\overrightarrow {ID}  \) \(= \left( {\overrightarrow {IA}  + \overrightarrow {IA}  + \overrightarrow {AB} } \right).\overrightarrow {ID}  =\) \( 2\overrightarrow {IA} .\overrightarrow {ID}  \) \(=  - \dfrac{{9{a^2}}}{2}\) 

(do \(AB \bot ID\) nên \(\overrightarrow {AB} .\overrightarrow {ID}  = 0\))

Nên chọn B.

Câu 26 Trắc nghiệm

Cho tam giác đều \(ABC\) cạnh $a$, với các đường cao \(AH,BK;\) vẽ\(HI \bot AC.\) Câu nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Phương án  A:$\overrightarrow {BC}  = 2\overrightarrow {BH}  \Rightarrow \overrightarrow {BA} .\overrightarrow {BC}  = 2\overrightarrow {BA} .\overrightarrow {BH} $ nên đẳng thức ở phương án A là đúng.

Phương án  B:\(\overrightarrow {CA}  = 4\overrightarrow {CI}  \Rightarrow \overrightarrow {CB} .\overrightarrow {CA}  = 4\overrightarrow {CB} .\overrightarrow {CI} \) nên đẳng thức ở phương án B là đúng.

Phương án  C:

\(\left. \begin{array}{l}\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right).\overrightarrow {BC}  = \overrightarrow {BC} .\overrightarrow {BC}  = {a^2}\\2\overrightarrow {BA} .\overrightarrow {BC}  = 2.a.a.\dfrac{1}{2} = {a^2}\end{array} \right\} \Rightarrow \left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right).\overrightarrow {BC}  = 2\overrightarrow {BA} .\overrightarrow {BC} \)nên đẳng thức ở phương án C là đúng.

Vậy chọn D.

Câu 27 Trắc nghiệm

Cho tam giác đều \(ABC\) cạnh \(a\), với đường cao \(BK\). Câu nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương án  A:do \(\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right).\overrightarrow {BC}  = \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AC} .\overrightarrow {BC}  =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0\) nên loại A

Phương án  B:do \(\overrightarrow {CB} .\overrightarrow {CK}  = CB.CK.\cos {60^{\rm{o}}} = \dfrac{{{a^2}}}{4}\) nên loại B và loại D.

Phương án  C: Do \(\overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos {60^{\rm{o}}} = \dfrac{{{a^2}}}{2}\) nên chọn C.

Câu 28 Trắc nghiệm

Cho hình vuông $ABCD$, tính ${\rm{cos}}\left( {\overrightarrow {AB} ,\overrightarrow {CA} } \right)$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì \(\left( {\overrightarrow {AB} ,\overrightarrow {CA} } \right) = {180^{\rm{o}}} - \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = {135^{\rm{o}}} \Rightarrow {\rm{cos}}\left( {\overrightarrow {AB} ,\overrightarrow {CA} } \right) =\cos 135^o=  - \dfrac{{\sqrt 2 }}{2}\)

Câu 29 Trắc nghiệm

Cho tam giác \(ABC\) vuông cân tại \(A\) có \(BC = a\sqrt 2 \). Tính \(\overrightarrow {CA} .\overrightarrow {CB} \)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(\overrightarrow {CA} .\overrightarrow {CB}  = a.a\sqrt 2 .\dfrac{{\sqrt 2 }}{2} = {a^2}\).

Câu 30 Trắc nghiệm

Cho ba điểm \(A,B,C\) phân biệt. Tập hợp những điểm \(M\) mà \(\overrightarrow {CM} .\overrightarrow {CB}  = \overrightarrow {CA} .\overrightarrow {CB} \) là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

$\overrightarrow {CM} .\overrightarrow {CB}  = \overrightarrow {CA} .\overrightarrow {CB}  $ $\Leftrightarrow \overrightarrow {CM} .\overrightarrow {CB}  - \overrightarrow {CA} .\overrightarrow {CB}  = 0 $ $\Leftrightarrow \left( {\overrightarrow {CM}  - \overrightarrow {CA} } \right).\overrightarrow {CB}  = 0 $ $\Leftrightarrow \overrightarrow {AM} .\overrightarrow {CB}  = 0$

Tập hợp điểm \(M\) là đường thẳng đi qua \(A\) và vuông góc với \(BC\).

Câu 31 Trắc nghiệm

Cho hình chữ nhật ABCD có AB = a, AC = 2a. Tính góc giữa hai vecto \(\overrightarrow {CA} \) và \(\overrightarrow {DC} .\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: ABCD là hình chữ nhật nên ta có: AB = DC = a.

\(\begin{array}{l}\angle \left( {\overrightarrow {CA} ,\,\,\overrightarrow {DC} } \right) = \angle \left( {\overrightarrow {CA} ,\,\,\overrightarrow {Cx} } \right) = \angle ACx = {180^0} - \angle ACD.\\ \Rightarrow \cos \angle ACD = \dfrac{{AD}}{{AC}} = \dfrac{a}{{2a}} = \dfrac{1}{2}\end{array}\)

 

\(\begin{array}{l} \Rightarrow \angle ACD = {60^0}\\ \Rightarrow \angle ACx = {180^0} - {60^0} = {120^0}.\end{array}\)

Câu 32 Trắc nghiệm

Gọi M, N lần lượt là trung điểm các cạnh CD, AB của hình bình hành ABCD. Tìm mệnh đề đúng trong các mệnh đề sau:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
\(\begin{array}{l}\overrightarrow {AM} .\overrightarrow {DN}  = \left( {\overrightarrow {AD}  + \overrightarrow {DM} } \right)\left( {\overrightarrow {DA}  + \overrightarrow {AN} } \right)\\ = \overrightarrow {AD} .\overrightarrow {DA}  + \overrightarrow {DM} .\overrightarrow {DA}  + \overrightarrow {AD} .\overrightarrow {AN}  + \overrightarrow {DM} .\overrightarrow {AN} \\ =  - A{D^2} + \dfrac{1}{2}\overrightarrow {DC} .\overrightarrow {DA}  + \overrightarrow {AD} .\dfrac{1}{2}\overrightarrow {AB}  + \dfrac{1}{2}\overrightarrow {DC} .\dfrac{1}{2}\overrightarrow {AB} \\ =  - A{D^2} + \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {DA}  + \dfrac{1}{2}\overrightarrow {AD} .\overrightarrow {AB}  + \dfrac{1}{4}DC.AB.\cos {0^0}\\ =  - A{D^2} + \dfrac{1}{4}A{B^2}\\ = \dfrac{1}{4}A{B^2} - A{D^2}.\end{array}\)