Câu 6 trang 91 SGK Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABC. Lấy các điểm A’, B’, C’ lần lượt thuộc các tia SA, SB, SC sao cho SA = aSA’, SB = bSB’, SC = cSC’, trong đó a, b, c là các số thay đổi. Chứng minh rằng mặt phẳng (A’B’C’) đi qua trọng tâm của tam giác ABC khi và chỉ khi a + b + c = 3.

Lời giải chi tiết

Ta có: \(\overrightarrow {SA} = a\overrightarrow {SA'} ,\;\overrightarrow {SB} = b\overrightarrow {SB'} ,\;\overrightarrow {SC} = c\overrightarrow {SC} .\)

Gọi G là trọng tâm của tam giác ABC thì

\(\eqalign{ & \overrightarrow {SG} = {1 \over 3}.\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right) \cr & Vay\,\overrightarrow {SG} = {a \over 3}\overrightarrow {SA'} + {b \over 3}\overrightarrow {SB'} + {c \over 3}\overrightarrow {SC'} \cr} \)

Mặt phẳng (A’B’C’) đi qua G khi và chỉ khi 4 điểm G, A’, B’, C’ đồng phẳng, nên theo kết quả bài tập 5 (SGK trang 91) , điều đó xảy ra nếu và chỉ nếu \({a \over 3} + {b \over 3} + {c \over 3} = 1\) , tức là: a + b + c = 3.