Câu 13 trang 18 SGK Hình học 11 Nâng cao

Đề bài

Cho hai tam giác vuông cân OAB và OA'B' có chung đỉnh O sao cho O nằm trên đoạn thẳng AB' và nằm ngoài đoạn thẳng A'B (h.16). Gọi G và G' lần lượt là trọng tâm các tam giác OAA' và OBB'.Chứng minh GOG' là tam giác vuông cân.

Lời giải chi tiết

Gọi Q là phép quay tâm O, góc quay π2 (bằng góc lượng giác (OA ; OB)).

Khi đó Q:

+) biến O thành O

+) biến A thành B

+) biến A’ thành B’

Tức là Q biến tam giác OAA’ và OBB’

Bởi vậy Q biến G (trọng tâm tam giác OAA’) thành G’ (trọng tâm tam giác OBB’).

Suy ra OG=OG^GOG=π2

Vậy GOG’ là tam giác vuông cân tại đỉnh O

Chú ý: Phép quay Q biến trọng tâm G tam giác ABC thành trọng tâm G’ của tam giác A’B’C’ ảnh của △ABC qua Q được suy ra từ phép quay Q biến trung điểm của đoạn thẳng thành trung điểm đoạn thẳng.

Nghĩa là do phép quay Q biến AA' thành BB' thì biến trung điểm M của AA' thành trung điểm N của BB'.

Do đó Q biến OM thành ON. Khi đó Q biến G (thuộc OM) thành G' (thuộc ON) và OG=OG=23OM=23ON.

Vậy Q biến G thành G' là trọng tâm tam giác OBB'.