Câu 3 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau :

a. \(y = 2\cos \left( {x + {\pi \over 3}} \right) + 3\)

b. \(y = \sqrt {1 - \sin \left( {{x^2}} \right)} - 1\)

c. \(y = 4\sin \sqrt x \)

LG a

\(y = 2\cos \left( {x + {\pi \over 3}} \right) + 3\)

Phương pháp giải:

Sử dụng lí thuyết \( - 1 \le \cos u \le 1\) với u là biểu thức của x.

Lời giải chi tiết:

Ta có: \(-1 ≤ \cos \left( {x + {\pi \over 3}} \right) ≤ 1\)

\(\eqalign{
& \Rightarrow - 2 \le 2\cos \left( {x + {\pi \over 3}} \right) \le 2\cr& \Rightarrow 1 \le 2\cos \left( {x + {\pi \over 3}} \right) + 3 \le 5\cr& \Rightarrow 1 \le y \le 5 \cr
&\text{ Vậy }\cr&\min \,y = 1\,khi\,x + {\pi \over 3} = \pi + k2\pi \,\cr&\text{ hay} \,x = {{2\pi } \over 3} + k2\pi \cr
&\max \,y = 5\,khi\,x + {\pi \over 3} = k2\pi \cr&\text{ hay} \,x = - {\pi \over 3} + k2\pi \left( {k \in \mathbb Z} \right) \cr} \)

LG b

\(y = \sqrt {1 - \sin \left( {{x^2}} \right)} - 1\)

Lời giải chi tiết:

ĐK: \(1 - \sin \left( {{x^2}} \right) \ge 0\)

Ta có:

\( - 1 \le \sin {x^2} \le 1 \) \(\Rightarrow 1 - \left( { - 1} \right) \ge 1 - \sin {x^2} \ge 1 - 1\)

\(\Leftrightarrow 2 \ge 1 - \sin {x^2} \ge 0 \) \(\Rightarrow 0 \le 1 - \sin {x^2} \le 2\)

\( \Rightarrow 0 \le \sqrt {1 - \sin {x^2}} \le \sqrt 2 \)

\(\Rightarrow 0- 1 \le \sqrt {1 - \sin {x^2}} - 1 \le \sqrt 2 - 1 \)

\(\Rightarrow - 1 \le y \le \sqrt 2 - 1\)

Vậy \(\min y = - 1\) khi \(\sin {x^2} = 1 \Leftrightarrow {x^2} = \frac{\pi }{2} + k2\pi ,\)\(\left( {k \ge 0,k \in \mathbb{Z}} \right)\)

\(\max y = \sqrt 2 - 1\) khi \(\sin {x^2} = - 1 \Leftrightarrow {x^2} = - \frac{\pi }{2} + k2\pi ,\)\(\left( {k > 0,k \in \mathbb{Z}} \right)\)

LG c

\(y = 4\sin \sqrt x \)

Lời giải chi tiết:

Ta có: \( - 1 \le \sin \sqrt x \le 1 \)

\(\Rightarrow - 4 \le 4\sin \sqrt x \le 4\)

\(⇒ -4 ≤ y ≤ 4\)

Vậy \(\min y = - 4\) khi \(\sin \sqrt x = - 1 \Leftrightarrow \sqrt x = - \frac{\pi }{2} + k2\pi ,\) \(\left( {k \in \mathbb{Z},k > 0} \right)\)

\(\max y = 4\) khi \(\sin \sqrt x = 1 \Leftrightarrow \sqrt x = \frac{\pi }{2} + k2\pi ,\) \(\left( {k \in \mathbb{Z},k \ge 0} \right)\)