Đề bài
Chọn ngẫu nhiên một gia đình trong số các gia đình có ba con. Gọi X là số con trai trong gia đình đó. Hãy lập bảng phân bố xác suất của X (giả thiết là xác suất sinh con trai là 0,5).
Lời giải chi tiết
X là một biến ngẫu nhiên rời rạc. Tập hợp các giá trị của X là {0, 1, 2, 3}. Để lập bảng phân bố xác suất của X, ta phải tính các xác suất P(X = 0), P(X = 1), P(X = 2) và P(X = 3).
Không gian mẫu gồm 8 phần tử sau :
(TTT, TTG, TGT, TGG, GTT, GTG, GGT, GGG),
Trong đó chẳng hạn GTG chỉ giới tính ba người con lần lượt là Gái, Trai, Gái.
Như vậy không gian mẫu gồm 8 kết quả có đồng khả năng.
Gọi Ak là biến cố “Gia đình đó có k con trai” (k = 0, 1, 2, 3)
\(P\left( {X = 0} \right) = P\left( {{A_0}} \right) = {1 \over 8}\) (vì chỉ có một kết quả thuận lợi cho A0 là GGG);
\(P\left( {X = 1} \right) = P\left( {{A_1}} \right) = {3 \over 8}\) (vì có ba kết quả thuận lợi cho A1 là TGG, GTG và GGT);
\(P\left( {X = 2} \right) = P\left( {{A_2}} \right) = {3 \over 8}\) (vì có ba kết quả thuận lợi cho A2 là GTT, TGT và TTG);
\(P\left( {X = 3} \right) = P\left( {{A_3}} \right) = {1 \over 8}\) (vì có 1 kết quả thuận lợi cho A3 là TTT);
Vậy bảng phân bổ xác suất của X là :
X | 0 | 1 | 2 | 3 |
P | \({1 \over 8}\) | \({3 \over 8}\) | \({3 \over 8}\) | \({1 \over 8}\) |