Hãy chọn khẳng định đúng trong các khẳng định dưới đây :
LG a
Dãy số (un) xác định bởi
\({u_1} = 3\text{ và }{u_{n + 1}} = {u_n} + 5\) với mọi n ≥ 1
là một cấp số cộng.
Phương pháp giải:
Xét hiệu \({u_{n + 1}} - {u_n} \) có là hằng số hay không.
Lời giải chi tiết:
Đúng vì \({u_{n + 1}} - {u_n} = 5,\forall n \ge 1\)
LG b
Dãy số (un) xác định bởi
\({u_1} = 3\text{ và }{u_{n + 1}} = {u_n} + n\) với mọi n ≥ 1,
là một cấp số cộng.
Phương pháp giải:
Xét hiệu \({u_{n + 1}} - {u_n} \) có là hằng số hay không.
Lời giải chi tiết:
Sai vì \({u_{n + 1}} - {u_n} = n\) không là hằng số
LG c
Dãy số (un) xác định bởi
\({u_1} = 4\text{ và }{u_{n + 1}} = 5{u_n}\) với mọi n ≥ 1,
là một cấp số nhân.
Phương pháp giải:
Xét thương \({{{u_{n + 1}}} \over {{u_n}}} \) có là hằng số hay không.
Lời giải chi tiết:
Đúng vì \({{{u_{n + 1}}} \over {{u_n}}} = 5\) là hằng số
LG d
Dãy số (un) xác định bởi
\({u_1} = 1\text{ và } {u_{n + 1}} = n{u_n}\) với mọi n ≥ 1
là một cấp số nhân.
Lời giải chi tiết:
Sai vì \({{{u_{n + 1}}} \over {{u_n}}} = n\) không là hằng số.