Tìm các nghiệm của phương trình sau (làm tròn kết quả nghiệm gần đúng đến hàng phần nghìn)
LG a
\(f'\left( x \right) = 0\) \(\text{ với }\,f\left( x \right) = {{{x^3}} \over 3} - 2{x^2} - 6x - 1\)
Phương pháp giải:
Tính f'(x) và giải các phương trình.
Lời giải chi tiết:
\(\eqalign{ & f'\left( x \right) = {x^2} - 4x - 6 \cr & f'\left( x \right) = 0 \Leftrightarrow {x^2} - 4x - 6 = 0 \cr & \Leftrightarrow \left[ {\matrix{ {x = 2 - \sqrt {10} \approx - 1,162} \cr {x = 2 + \sqrt {10} \approx 5,162} \cr } } \right. \cr} \)
LG b
\(f'\left( x \right) = - 5\) \(\text{ với }\,f\left( x \right) = {{{x^4}} \over 4} - {x^3} - {{3{x^2}} \over 2} - 3.\)
Lời giải chi tiết:
Ta có: \(f'(x) = {x^3} - 3{x^2} - 3x.\)
Do đó :
\(\eqalign{ & f'(x)+ 5 = 0 \cr &\Leftrightarrow {x^3} - 3{x^2} - 3x + 5 = 0 \cr & \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 5} \right) = 0 \cr} \)
\( \Leftrightarrow \left[ \begin{array}{l}
x - 1 = 0\\
{x^2} - 2x - 5 = 0
\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
x = 1 \pm \sqrt 6
\end{array} \right.\)
Phương trình có ba nghiệm là \(1;1 + \sqrt 6 \;\text{ và }\,1 - \sqrt 6 \)
Vậy các nghiệm gần đúng của phương trình là :
\(\eqalign{ & {x_1} = 1 \cr & {x_2} \approx 3,449 \cr & {x_3} \approx - 1,449 \cr} \)