Giải bài 3.7, 3.8 trang 10 SBT vật lí 12

Lựa chọn câu để xem lời giải nhanh hơn

3.7

Một con lắc đơn dao đồng với biên độ góc \({\alpha _0}\) nhỏ \(\sin {\alpha _0} \approx {\alpha _0}(rad)\). Chọn mốc thế năng ở vị trí cân bằng. Công thức tính thế năng của con lắc ở li độ góc \(\alpha \) nào sau đây là sai?

A.\({{\rm{W}}_t} = mgl(1 - \cos \alpha )\)

B.\({{\rm{W}}_t} = mgl\cos \alpha \)

C.\({{\rm{W}}_t} = 2mgl{\sin ^2}\dfrac{\alpha }{2}\)

D.\({{\rm{W}}_t} = \dfrac{1}{2}mgl{\alpha ^2}\)

Phương pháp giải:

Sử dụng công thức tính thế năng con lắc đơn: \({{\rm{W}}_t} = mgl(1 - \cos \alpha )\)

Sử dụng công thức lượng giác: \(1 - \cos \alpha = 2{\sin ^2}\dfrac{\alpha }{2}\)

Sử dụng công thức gần đúng: Khi \(\alpha \) nhỏ \(\sin \alpha \approx \alpha \)

Lời giải chi tiết:

Ta có thế năng của con lắc đơn \({{\rm{W}}_t} = mgl(1 - \cos \alpha )\)

Vì \(1 - \cos \alpha = 2{\sin ^2}\dfrac{\alpha }{2}\)

\( \Rightarrow {{\rm{W}}_t} = 2mgl{\sin ^2}\dfrac{\alpha }{2}\)

Khi \(\alpha \) nhỏ \(\sin \dfrac{\alpha }{2} \approx \dfrac{\alpha }{2}\)

\( \Rightarrow {\sin ^2}\dfrac{\alpha }{2} \approx \dfrac{{{\alpha ^2}}}{4}\)

\( \Rightarrow {{\rm{W}}_t} = 2mgl{\sin ^2}\dfrac{\alpha }{2}\)

\( \approx 2mgl.\dfrac{{{\alpha ^2}}}{4} = \dfrac{1}{2}mgl{\alpha ^2}\)

Chọn B

3.8

Một con lắc đơn dao động với biên độ góc \({\alpha _0} < {90^0}\). Chọn mốc thế năng ở vị trí cân bằng. Công thức tính cơ năng nào sau đây là sai ?

A. \({\rm{W}} = \dfrac{{\rm{1}}}{{\rm{2}}}m{v^2} + mgl(1 - c{\rm{os}}\alpha )\)

B. \({\rm{W}} = mgl(1 - c{\rm{os}}{\alpha _0})\)

C. \({\rm{W}}{\mkern 1mu} {\rm{ = }}\dfrac{{\rm{1}}}{{\rm{2}}}mv_{\max }^2\)

D. \({\rm{W}} = mglc{\rm{os}}{\alpha _0}\)

Phương pháp giải:

Sử dụng công thức tính động năng: \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\)

Sử dụng công thức tính thế năng: \({{\rm{W}}_t} = mgl(1 - \cos \alpha )\)

Cơ năng: \({\rm{W}} = {W_t} + {{\rm{W}}_d}\)

Lời giải chi tiết:

Ta có:

Động năng của con lắc: \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\)

Thế năng của con lắc: \({{\rm{W}}_t} = mgl(1 - \cos \alpha )\)

+ Cơ năng con lắc: \({\rm{W}} = {W_t} + {{\rm{W}}_d}\)

\( = \dfrac{{\rm{1}}}{{\rm{2}}}m{v^2} + mgl(1 - c{\rm{os}}\alpha )\)\( \Rightarrow A\) đúng

+ \({\rm{W}} = {{\rm{W}}_{{t_{\max }}}} = mgl(1 - c{\rm{os}}{\alpha _0})\)\( \Rightarrow B\) đúng

+ \({\rm{W}}{\mkern 1mu} {\rm{ = }}{{\rm{W}}_{{d_{\max }}}}{\mkern 1mu} = \dfrac{{\rm{1}}}{{\rm{2}}}mv_{\max }^2\)\( \Rightarrow C\) đúng

Chọn D