Giải mục 2 trang 61, 62 SGK Toán 10 tập 2 - Chân trời sáng tạo

  •   
Lựa chọn câu để xem lời giải nhanh hơn

HĐ Khám phá 2

Cho điểm M0(x0;y0) nằm trên đường tròn (C) tâm I(a;b)và cho điểmM(x;y) tùy ý trong mặt phẳng Oxy. Gọi Δ là tiếp tuyến với (C) tại M0

a) Viết biểu thức tọa độ của hai vt M0MM0I

b) Viết biểu thức tọa độ của tích vô hướng của hai vt M0MM0I

c) Phương trình M0M.M0I=0là phương trình của đường thẳng nào?

Phương pháp giải:

a) Với A(a;b),B(x;y) thì tọa độ của vt AB=(xa;yb)

b) Với a=(a,b),b=(x;y) thì a.b=ax+by

c) Từ tích vô hướng đưa ra kết luận là M0M=(xx0;yy0), M0I=(ax0;by0)

Lời giải chi tiết:

a) Biểu thức tọa độ của hai vt M0MM0IM0M=(xx0;yy0), M0I=(ax0;by0)

b) Ta có:

M0M.M0I=(xx0)(ax0)+(by0)(yy0)

c) M0M.M0I=0M0MM0I

M0I là đoạn thẳng nối tâm với điểm nằm ngoài

Vậy ta thấy pt đường thẳng MM0 là tiếp tuyến của đường tròn tại điểm M0

Thực hành 3

Viết phương trình tiếp tuyến của đường tròn (C):x2+y22x4y20=0 tại điểm A(4;6)

Phương pháp giải:

Phương trình tiếp tuyến của đường tròn tâm I(a;b) tại điểm M(x0;y0)nằm trên đường tròn là: (ax0)(xx0)+(by0)(yy0)=0

Lời giải chi tiết:

Ta có 42+622.44.620=0, nên điểm A thuộc (C)

Đường tròn (C):x2+y22x4y20=0 có tâm I(1;2)

Phương trình tiếp tuyến d của (C) tại A(4;6) là:

(41)(x4)+(62)(y6)=03x+4y+16=0

Vận dụng 3

Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình:

(x1)2+(y1)2=169144.

Khi người đó vung đĩa đến vị trí điểm M(1712;2) thì buông đĩa (hình 4). Viết phương trình tiếp tuyến của đường tròn (C) tại điểm M

Phương pháp giải:

Phương trình tiếp tuyến của đường trong tâm I(a;b) tại điểm M(x0;y0)nằm trên đường tròn là: (ax0)(xx0)+(by0)(yy0)=0

Lời giải chi tiết:

Ta có (17121)2+(21)2=169144, nên điểm M thuộc (C)

Đường tròn (x1)2+(y1)2=169144 có tâm I(1;1)

Phương trình tiếp tuyến d của (C) tại M(1712;2) là:

(17121)(x1712)+(21)(y2)=052x+y13324=0