Vẽ đồ thị các hàm số sau:
a) \(y = {x^2} - 4x + 3\)
b) \(y = - {x^2} - 4x + 5\)
c) \(y = {x^2} - 4x + 5\)
d) \(y = - {x^2} - 2x - 1\)
LG a
a) \(y = {x^2} - 4x + 3\)
Phương pháp giải:
+ Xác định đỉnh \(S(\frac{{ - b}}{{2a}};f(\frac{{ - b}}{{2a}}))\)
+ Trục đối xứng \(x = \frac{{ - b}}{{2a}}\)
+ Bề lõm: quay lên trên (nếu a>0), quay xuống dưới nếu a<0.
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải chi tiết:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 3\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 = - 1.\)
+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì \(a = 1 > 0\)
+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).
Ta vẽ được đồ thị như hình dưới.
LG b
b) \(y = - {x^2} - 4x + 5\)
Phương pháp giải:
+ Xác định đỉnh \(S(\frac{{ - b}}{{2a}};f(\frac{{ - b}}{{2a}}))\)
+ Trục đối xứng \(x = \frac{{ - b}}{{2a}}\)
+ Bề lõm: quay lên trên (nếu a>0), quay xuống dưới nếu a<0.
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải chi tiết:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = - {x^2} - 4x + 5\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.( - 1)}} = - 2;{y_S} = - {( - 2)^2} - 4.( - 2) + 5 = 9.\)
+ Có trục đối xứng là đường thẳng \(x = - 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì \(a = - 1 < 0\)
+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Ta vẽ được đồ thị như hình dưới.
LG c
c) \(y = {x^2} - 4x + 5\)
Phương pháp giải:
+ Xác định đỉnh \(S(\frac{{ - b}}{{2a}};f(\frac{{ - b}}{{2a}}))\)
+ Trục đối xứng \(x = \frac{{ - b}}{{2a}}\)
+ Bề lõm: quay lên trên (nếu a>0), quay xuống dưới nếu a<0.
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải chi tiết:
c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 5\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 5 = 1.\)
+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì \(a = 1 > 0\)
+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Ta vẽ được đồ thị như hình dưới.
LG d
d) \(y = - {x^2} - 2x - 1\)
Phương pháp giải:
+ Xác định đỉnh \(S(\frac{{ - b}}{{2a}};f(\frac{{ - b}}{{2a}}))\)
+ Trục đối xứng \(x = \frac{{ - b}}{{2a}}\)
+ Bề lõm: quay lên trên (nếu a>0), quay xuống dưới nếu a<0.
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải chi tiết:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = - {x^2} - 2x - 1\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 2)}}{{2.( - 1)}} = - 1;{y_S} = - {( - 1)^2} - 2.( - 1) - 1 = 0\)
+ Có trục đối xứng là đường thẳng \(x = - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì \(a = - 1 < 0\)
+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua gốc tọa độ (0; -1).
Ta vẽ được đồ thị như hình dưới.