Giải bài 5 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Đề bài

Xét tính đúng sai của các mệnh đề sau:

a) \(\forall x \in \mathbb{N},{x^3} > x\)

b) \(\exists x \in \mathbb{Z},x \notin \mathbb{N}\)

c) \(\forall x \in \mathbb{R},\) nếu \(x \in \mathbb{Z}\) thì \(x \in \mathbb{Q}\)

Lời giải chi tiết

a) Mệnh đề “\(\forall x \in \mathbb{N},{x^3} > x\)” sai vì \(0 \in \mathbb{N}\) nhưng \({0^3} = 0.\)

b) Mệnh đề “\(\exists x \in \mathbb{Z},x \notin \mathbb{N}\)” đúng, chẳng hạn \( - 2 \in \mathbb{Z}, - 2 \notin \mathbb{N}.\)

c) Mệnh đề “\(\forall x \in \mathbb{R},\) nếu \(x \in \mathbb{Z}\) thì \(x \in \mathbb{Q}\)” đúng vì \(\mathbb{Z} \subset \mathbb{Q}.\)