Giải bài 3 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo

Đề bài

Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị của các mẫu số liệu sau:

a)

Giá trị

-2

-1

0

1

2

Tần số

10

20

30

20

10

b)

Giá trị

0

1

2

3

4

Tần số

0,1

0,2

0,4

0,2

0,1

Phương pháp giải - Xem chi tiết

Cho bảng số liệu:

Giá trị

\({x_1}\)

\({x_2}\)

\({x_m}\)

Tần số

\({f_1}\)

\({f_2}\)

\({f_m}\)

+) Số trung bình: \(\overline x = \frac{{{x_1}.{f_1} + {x_2}.{f_2} + ... + {x_m}.{f_m}}}{{{f_1} + {f_2} + ... + {f_m}}}\)

+) Phương sai \({S^2} = \frac{1}{n}\left( {{f_1}.{x_1}^2 + {f_2}..{x_2}^2 + ... + {f_n}..{x_n}^2} \right) - {\overline x ^2}\)

=> Độ lệch chuẩn \(S = \sqrt {{S^2}} \)

Sắp xếp mẫu số liệu theo thứ tự không giảm: \({X_1},{X_2},...,{X_n}\)

+) Khoảng biến thiên: \(R = {X_n} - {X_1}\)

Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

+) Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\)

Lời giải chi tiết

a) +) Số trung bình \(\overline x = \frac{{ - 2.10 + ( - 1).10 + 0.30 + 1.20 + 2.10}}{{10 + 20 + 30 + 20 + 10}} = 0\)

+) phương sai hoặc \({S^2} = \frac{1}{9}\left( {10.{{( - 2)}^2} + 10.{{( - 1)}^2} + ... + {{10.2}^2}} \right) - {0^2} \approx 13,33\)

=> Độ lệch chuẩn \(S \approx 3,65\)

+) Khoảng biến thiên: \(R = 2 - ( - 2) = 4\)

Tứ phân vị: \({Q_2} = 0;{Q_1} = - 1;{Q_3} = 1\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 1 - ( - 1) = 2\)

b) Giả sử cỡ mẫu \(n = 10\). Khi đó mẫu số liệu trở thành:

Giá trị

0

1

2

3

4

Tần số

1

2

4

2

1

+) Số trung bình \(\overline x = \frac{{0.0,1 + 1.0,2 + 2.0,4 + 3.0,2 + 4.0,1}}{{0,1 + 0,2 + 0,4 + 0,2 + 0,1}} = 2\)

+) phương sai hoặc \({S^2} = \frac{1}{1}\left( {0,{{1.0}^2} + 0,{{2.1}^2} + ... + 0,{{1.4}^2}} \right) - {2^2} = 1,2\)

=> Độ lệch chuẩn \(S \approx 1,1\)

+) Khoảng biến thiên: \(R = 4 - 0 = 4\)

Tứ phân vị: \({Q_2} = 2;{Q_1} = 1;{Q_3} = 3\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 3 - 1 = 2\)