Giải bài 4 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo

  •   

Đề bài

Một con tàu biển M rời cảng O và chuyển động thẳng theo phương tạo với bờ biển một góc 60. Trên bờ biển có hai đài quan sát AB nằm về hai phía so với cảng O và lần lượt cách cảng O khoảng 1km và 2km (Hình 2).

a) Đặt độ dài của MOx km. Biểu diễn khoảng cách từ tàu đến A và từ tàu đến B theo x.

b) Tìm x để khoảng cách từ tàu đến B bằng 45 khoảng cách từ tàu đến A

c) Tìm x để khoảng cách từ tàu đến B nhỏ hơn khoảng cách từ tàu đến O đúng 500 m.

Lưu ý: Làm tròn kết quả đến hàng phần trăm.

Phương pháp giải - Xem chi tiết

a) Sử dụng định lý cosin a2=b2+c2+2bccosA

b) Lập phương trình MB=45MA, và giải phương trình lập được

c) Lập phương trình MB=MO0,5, và giải phương trình lập được

Lời giải chi tiết

a) Đặt độ dài của MOx km (x>0)

Ta có: ^MOA+^MOB=180 (hai góc bù nhau) ^MOA=120

Áp dụng định lý Cosin trong tam giác ta tính được:

+) Khoảng cách từ tàu đến B MB=x2+222.2.x.cos60=x22x+4

+) Khoảng cách từ tàu đến A MA=x2+122.1.x.cos120=x2+x+1

b) Theo giải thiết ta có phương trình MB=45MAx22x+4=45x2+x+1

x22x+4=1625(x2+x+1)925x26625x+8425=0

x1,64x5,69

Thay hai nghiệm vừa tìm được vào phương trình x22x+4=45x2+x+1 ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy khi x1,64 hoặc x5,69 thì khoảng cách từ tàu đến B bằng 45 khoảng cách từ tàu đến A

c) Đổi 500 m = 0,5 km

Theo giả thiết ta có phương trình sau:

MB=MO0,5x22x+4=x0,5x22x+4=(x0,5)2x22x+4=x2x+14x=154

Thay x=154 vào phương trình x22x+4=x0,5 ta thấy thỏa mãn phương trình

Vậy khi x=154 thì khoảng cách từ tàu đến B nhỏ hơn khoảng cách từ tàu đến O đúng 500 m.