Giải bài 4 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo

  •   

Đề bài

Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm A(4;2)

Phương pháp giải - Xem chi tiết

Bước 1: Gọi I(a,b) là tâm của bán kính, giải hệ phương trình {d(I,Ox)=IAd(I,Oy)=IA

Bước 2: Viết phương trình đường tròn (xa)2+(yb)2=R2 với tâm I(a;b) và bán kính R

Lời giải chi tiết

Gọi tâm của đường tròn là điểm I(a;b)

Ta có: IA=(a4)2+(b2)2,d(I,Ox)=b,d(I,Oy)=a

Giải hệ phương trình {d(I,Ox)=IAd(I,Oy)=IA{b=(a4)2+(b2)2a=(a4)2+(b2)2

Thay a=b vào phương trình a=(a4)2+(b2)2 ta có:

a=(a4)2+(a2)2a2=(a4)2+(a2)2a212a+20=0[a=10a=2

Với a=b=2 ta có phương trình đường tròn (C) là: (x2)2+(y2)2=4

Với a=b=10 ta có phương trình đường tròn (C) là: (x10)2+(y10)2=100