Đề bài
Tổng số điểm mà các thành viên đội tuyển Olympic Toán quốc tế (IMO) của Việt Nam đặt được trong 20 kì thi được cho ở bảng sau:
Năm | Tổng điểm | Năm | Tổng điểm | Năm | Tổng điểm | Năm | Tổng điểm |
2020 | 150 | 2015 | 151 | 2010 | 133 | 2005 | 143 |
2019 | 177 | 2014 | 157 | 2009 | 161 | 2004 | 196 |
2018 | 148 | 2013 | 180 | 2008 | 159 | 2003 | 172 |
2017 | 155 | 2012 | 148 | 2007 | 168 | 2002 | 166 |
2016 | 151 | 2011 | 113 | 2006 | 131 | 2001 | 139 |
(Nguồn: https://imo-offial.org)
Có ý kiến cho rằng điểm thi của đội tuyển giai đoạn 2001 – 2010 cao hơn giai đoạn 2011 – 2020. Hãy sử dụng số trung bình và trung vị để kiểm nghiệm xem ý kiến trên có đúng không.
Phương pháp giải - Xem chi tiết
+) Số trung bình: \(\overline x = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)
+) Trung vị: \({M_e}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \({X_1},{X_2},...,{X_n}\)
Bước 2: Tình trung vị: \({M_e} = \left\{ \begin{array}{l}{X_{k + 1}}\quad \quad \quad \quad \quad (n = 2k + 1)\\\frac{1}{2}({X_k} + {X_{k + 1}})\quad \;\,(n = 2k)\end{array} \right.\)
Lời giải chi tiết
+) Giai đoạn 2001 – 2010
Số trung bình \(\overline x = \frac{{139 + 166 + 172 + 196 + 143 + 131 + 168 + 159 + 161 + 133}}{{10}} = 156,8\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(131,133,139,143,159,161,166,168,172,196\)
Do \(n = 10\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(159 + 161) = 160\)
+) Giai đoạn 2011 – 2020
Số trung bình \(\overline x = \frac{{150 + 177 + 148 + 155 + 151 + 151 + 157 + 180 + 148 + 113}}{{10}} = 153\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(113,\;148,\;148,\;150,\;151,\;151,\;155,\;157,\;177,\;180\)
Do \(n = 10\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(151 + 151) = 151\)
+) So sánh theo số trung bình hay số trung vị ta đều thấy điểm thi của đổi tuyển giai đoạn 2001 – 2010 cao hơn giai đoạn 2011 – 2020.
Vậy ý kiến trên là đúng.