Giá trị của biểu thức: \(\dfrac{1}{{1.4}} + \dfrac{1}{{4.7}} + \dfrac{1}{{7.10}} + ... + \dfrac{1}{{2020.2023}}\) là:
Ta có:
\(\begin{array}{l}\dfrac{1}{{1.4}} + \dfrac{1}{{4.7}} + \dfrac{1}{{7.10}} + ... + \dfrac{1}{{2020.2023}}\\ = \dfrac{1}{3}.\left( {\dfrac{3}{{1.4}} + \dfrac{3}{{4.7}} + \dfrac{3}{{7.10}} + ... + \dfrac{3}{{2020.2023}}} \right)\\ = \dfrac{1}{3}.\left( {\dfrac{1}{1} - \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{{10}} + ... + \dfrac{1}{{2020}} - \dfrac{1}{{2023}}} \right)\\ = \dfrac{1}{3}.\left( {1 - \dfrac{1}{{2023}}} \right) = \dfrac{1}{3}.\dfrac{{2022}}{{2023}} = \dfrac{{674}}{{2023}}\end{array}\).
Cho \({x_0}\) là số thỏa mãn: \(\left( {2022 + \dfrac{1}{{2022}} - 2021 - \dfrac{1}{{2021}}} \right).x = \dfrac{1}{4} + \dfrac{1}{{12}} - \dfrac{1}{3}\).
Khẳng định nào sau đây đúng:
\(\begin{array}{l}\left( {2022 + \dfrac{1}{{2022}} - 2021 - \dfrac{1}{{2021}}} \right).x = \dfrac{1}{4} + \dfrac{1}{{12}} - \dfrac{1}{3}\\\left( {1 + \dfrac{1}{{2022}} - \dfrac{1}{{2021}}} \right).x = \dfrac{3}{{12}} + \dfrac{1}{{12}} - \dfrac{4}{{12}}\\\left( {1 + \dfrac{1}{{2022}} - \dfrac{1}{{2021}}} \right).x = 0\end{array}\)
Mà \(1 + \dfrac{1}{{2022}} - \dfrac{1}{{2021}} > 0\) nên \(x = 0\).
Giá trị \(x\) thỏa mãn \(\dfrac{3}{{16}} - \left( {x + \dfrac{5}{8}} \right) = \dfrac{1}{{16}} - 1\) là:
\(\begin{array}{l}\dfrac{3}{{16}} - \left( {x + \dfrac{5}{8}} \right) = \dfrac{1}{{16}} - 1\\\dfrac{3}{{16}} - \left( {x + \dfrac{5}{8}} \right) = \dfrac{{ - 15}}{{16}}\\x + \dfrac{5}{8} = \dfrac{3}{{16}} - \left( {\dfrac{{ - 15}}{{16}}} \right)\\x + \dfrac{5}{8} = \dfrac{{18}}{{16}}\\x = \dfrac{{18}}{{16}} - \dfrac{5}{8}\\x = \dfrac{8}{{16}}\\x = \dfrac{1}{2}\end{array}\)
Vậy \(x = \dfrac{1}{2}\).
Cho \(x - \left( {\dfrac{{ - 1}}{2}} \right) = 1\dfrac{1}{3} - \dfrac{1}{9}\)
Chọn khẳng định đúng:
\(\begin{array}{l}x - \left( {\dfrac{{ - 1}}{2}} \right) = 1\dfrac{1}{3} - \dfrac{1}{9}\\x + \dfrac{1}{2} = \dfrac{4}{3} - \dfrac{1}{9}\\x + \dfrac{1}{2} = \dfrac{{11}}{9}\\x = \dfrac{{11}}{9} - \dfrac{1}{2}\\x = \dfrac{{13}}{{18}}\end{array}\)
Vậy \(x = \dfrac{{13}}{{18}}\).
Giá trị của biểu thức \(A = \left( {\dfrac{{12}}{7} - \dfrac{1}{2} + \dfrac{3}{5}} \right) - \left( {\dfrac{4}{5} + \dfrac{4}{7} - \dfrac{3}{2}} \right) - \left( {1 - \dfrac{1}{5} + \dfrac{1}{7}} \right)\) là:
\(\begin{array}{l}A = \left( {\dfrac{{12}}{7} - \dfrac{1}{2} + \dfrac{3}{5}} \right) - \left( {\dfrac{4}{5} + \dfrac{4}{7} - \dfrac{3}{2}} \right) - \left( {1 - \dfrac{1}{5} + \dfrac{1}{7}} \right)\\A = \dfrac{{12}}{7} - \dfrac{1}{2} + \dfrac{3}{5} - \dfrac{4}{5} - \dfrac{4}{7} + \dfrac{3}{2} - 1 + \dfrac{1}{5} - \dfrac{1}{7}\\A = \left( {\dfrac{{12}}{7} - \dfrac{4}{7} - \dfrac{1}{7}} \right) + \left( { - \dfrac{1}{2} + \dfrac{3}{2}} \right) + \left( {\dfrac{3}{5} - \dfrac{4}{5} + \dfrac{1}{5}} \right) - 1\\A = 1 + 1 + 0 - 1\\A = 1\end{array}\)
Tính hợp lí biểu thức \(\left( {2021 - \dfrac{1}{{2020}} - \dfrac{1}{3}} \right) - \left( {1 - \dfrac{1}{{2020}} - \dfrac{2}{3}} \right) - 1\dfrac{1}{3}\) ta được kết quả:
\(\begin{array}{l}\left( {2021 - \dfrac{1}{{2020}} - \dfrac{1}{3}} \right) - \left( {1 - \dfrac{1}{{2020}} - \dfrac{2}{3}} \right) - 1\dfrac{1}{3}\\ = 2021 - \dfrac{1}{{2020}} - \dfrac{1}{3} - 1 + \dfrac{1}{{2020}} + \dfrac{2}{3} - \dfrac{4}{3}\\ = (2021 - 1) + \left( { - \dfrac{1}{{2020}} + \dfrac{1}{{2020}}} \right) + \left( { - \dfrac{1}{3} + \dfrac{2}{3} - \dfrac{4}{3}} \right)\\ = 2020 + 0 + ( - 1)\\ = 2019\end{array}\)
Giá trị của biểu thức \(D = \dfrac{{2019}}{{2022}} - \dfrac{2}{{2021}} + \dfrac{3}{{2022}} - \dfrac{{4040}}{{2021}}\)
\(D = \dfrac{{2019}}{{2022}} - \dfrac{2}{{2021}} + \dfrac{3}{{2022}} - \dfrac{{4040}}{{2021}}\)
\(D = \left( {\dfrac{{2019}}{{2022}} + \dfrac{3}{{2022}}} \right) - \left( {\dfrac{2}{{2021}} + \dfrac{{4040}}{{2021}}} \right)\)
\(D = \dfrac{{2022}}{{2022}} - \dfrac{{4042}}{{2021}}\)
\(D = 1 - 2= -1\).
Kết quả của phép tính \(\dfrac{1}{2} + \dfrac{1}{6}\) là:
\(\dfrac{1}{2} + \dfrac{1}{6} = \dfrac{{1.3}}{{2.3}} + \dfrac{1}{6} = \dfrac{3}{6} + \dfrac{1}{6} = \dfrac{{3 + 1}}{6} = \dfrac{4}{6} = \dfrac{2}{3}\).
Chọn kết luận đúng nhất về kết quả của phép tính \(\dfrac{5}{{12}} + \dfrac{{ - 7}}{{24}}\).
Ta có: \(\dfrac{5}{{12}} + \dfrac{{ - 7}}{{24}} = \dfrac{{5.2}}{{12.2}} + \dfrac{{ - 7}}{{24}} = \dfrac{{10}}{{24}} + \dfrac{{ - 7}}{{24}} = \dfrac{{10 + ( - 7)}}{{24}} = \dfrac{3}{{24}} = \dfrac{1}{8} > 0\).
Do đó kết quả là số hữu tỉ dương.
\(\dfrac{{69}}{{35}}\) là kết quả của phép tính:
Ta có: \(\dfrac{{11}}{5} + \dfrac{2}{7} = \dfrac{{77}}{{35}} + \dfrac{{10}}{{35}} = \dfrac{{77 + 10}}{{35}} = \dfrac{{87}}{{35}}\);
\(\dfrac{{11}}{7} + \dfrac{2}{5} = \dfrac{{55}}{{35}} + \dfrac{{14}}{{35}} = \dfrac{{55 + 14}}{{35}} = \dfrac{{69}}{{35}}\);
\(\dfrac{3}{7} + \dfrac{9}{5} = \dfrac{{15}}{{35}} + \dfrac{{63}}{{35}} = \dfrac{{15 + 63}}{{35}} = \dfrac{{78}}{{35}}\);
\(1 + \dfrac{{33}}{{35}} = \dfrac{{35}}{{35}} + \dfrac{{33}}{{35}} = \dfrac{{35 + 33}}{{35}} = \dfrac{{68}}{{35}}\).
Do đó \(\dfrac{{69}}{{35}}\) là kết quả của phép tính: \(\dfrac{{11}}{7} + \dfrac{2}{5}\).
Số \(\dfrac{{16}}{{15}}\) viết thành hiệu của hai số hữu tỉ dương nào dưới đây?
Ta có: \(\dfrac{7}{3} - \dfrac{{23}}{5} = \dfrac{{35}}{{15}} - \dfrac{{69}}{{15}} = \dfrac{{35 - 69}}{{15}} = \dfrac{{ - 34}}{{15}}\);
\(\dfrac{5}{3} - \dfrac{3}{5} = \dfrac{{25}}{{15}} - \dfrac{9}{{15}} = \dfrac{{25 - 9}}{{15}} = \dfrac{{16}}{{15}}\);
\(\dfrac{3}{5} - \dfrac{5}{3} = \dfrac{9}{{15}} - \dfrac{{25}}{{15}} = \dfrac{{9 - 25}}{{15}} = \dfrac{{ - 16}}{{15}}\);
\(\dfrac{{18}}{5} - \dfrac{2}{3} = \dfrac{{54}}{{15}} - \dfrac{{10}}{{15}} = \dfrac{{54 - 10}}{{15}} = \dfrac{{44}}{{15}}\).
Vậy số \(\dfrac{{16}}{{15}}\) viết thành hiệu của hai số hữu tỉ dương \(\dfrac{5}{3} - \dfrac{3}{5}\).
Cho \(M = 2021 - \left[ {\left( {\dfrac{1}{3} + \dfrac{1}{{12}} - \dfrac{5}{6}} \right) + 2020} \right]\), khẳng định nào sau đây đúng:
\(\begin{array}{l}M = 2021 - \left[ {\left( {\dfrac{1}{3} + \dfrac{1}{{12}} - \dfrac{5}{6}} \right) + 2020} \right]\\M = 2021 - \left[ {\left( {\dfrac{4}{12} + \dfrac{1}{{12}} - \dfrac{{10}}{{12}}} \right) + 2020} \right]\\M = 2021 - \left( { - \dfrac{5}{{12}} + 2020} \right)\\M = 2021 + \dfrac{5}{{12}} - 2020\\M = \dfrac{5}{{12}}+1=\dfrac{17}{{12}}\end{array}\)
Ta thấy: \(M = \dfrac{17}{{12}} > \dfrac{{12}}{{12}} = 1\) nên \(M > 1\)
Tính \(\dfrac{5}{{11}} + \dfrac{9}{{20}} + \left( { - \dfrac{5}{{11}}} \right),\) ta được kết quả là:
\(\dfrac{5}{{11}} + \dfrac{9}{{20}} + \left( { - \dfrac{5}{{11}}} \right) = \left[ {\dfrac{5}{{11}} + \left( { - \dfrac{5}{{11}}} \right)} \right] + \dfrac{9}{{20}} = \dfrac{{5 + ( - 5)}}{{11}} + \dfrac{9}{{20}} = 0 + \dfrac{9}{{20}} = \dfrac{9}{{20}}\).
Giá trị biểu thức \(N = \dfrac{{ - 2}}{3} - \dfrac{4}{5} - \left( { - \dfrac{3}{{20}}} \right)\) bằng:
\(\begin{array}{l}N = \dfrac{{ - 2}}{3} - \dfrac{4}{5} - \left( { - \dfrac{3}{{20}}} \right)\\N = \dfrac{{ - 2}}{3} - \dfrac{4}{5} + \dfrac{3}{{20}}\\N = \dfrac{{ - 40}}{{60}} - \dfrac{{48}}{{60}} + \dfrac{9}{{60}}\\N = \dfrac{{ - 79}}{{60}}\end{array}\)
Cho \(x + \dfrac{3}{7} = - \dfrac{3}{{14}}\). Giá trị của x bằng:
\(x + \dfrac{3}{7} = - \dfrac{3}{{14}}\)
\(x = - \dfrac{3}{{14}} - \dfrac{3}{7}\)
\(x = \dfrac{{ - 3}}{{14}} - \dfrac{6}{{14}}\)
\(x = \dfrac{{ - 3 - 6}}{{14}}\)
\(x = \dfrac{{ - 9}}{{14}}\)
Giá trị \(x\) thỏa mãn \(x - \dfrac{1}{3} = \dfrac{2}{9}\) là:
\(\begin{array}{l}x - \dfrac{1}{3} = \frac{2}{9}\\x = \dfrac{2}{9} + \dfrac{1}{3}\\x = \dfrac{2}{9} + \dfrac{3}{9}\\x = \dfrac{5}{9}\end{array}\)
Vậy \(x = \dfrac{5}{9}\).
Giá trị biểu thức \(\dfrac{4}{5} - \left( { - \dfrac{2}{7}} \right) + \left( { - \dfrac{5}{{10}}} \right)\) là:
Ta có \(\dfrac{4}{5} - \left( { - \dfrac{2}{7}} \right) + \left( { - \dfrac{5}{{10}}} \right)\)\( = \dfrac{4}{5} + \dfrac{2}{7} + \dfrac{{ - 5}}{{10}}\)\( = \dfrac{{4.14}}{{5.14}} + \dfrac{{2.10}}{{7.10}} + \dfrac{{ - 5.7}}{{10.7}} = \dfrac{{56}}{{70}} + \dfrac{{20}}{{70}} + \dfrac{{ - 35}}{{70}} = \dfrac{{56 + 20 + ( - 35)}}{{70}} = \dfrac{{41}}{{70}}\).
Kết luận nào đúng khi nói về giá trị của biểu thức \(B = \left( {\dfrac{1}{2} - \dfrac{7}{{13}} - \dfrac{1}{3}} \right) + \left( { - \dfrac{6}{{13}} + \dfrac{1}{2} + 1\dfrac{1}{3}} \right)\).
Ta có: \(B = \left( {\dfrac{1}{2} - \dfrac{7}{{13}} - \dfrac{1}{3}} \right) + \left( { - \dfrac{6}{{13}} + \dfrac{1}{2} + 1\dfrac{1}{3}} \right)\)
\( = \dfrac{1}{2} - \dfrac{7}{{13}} - \dfrac{1}{3} - \dfrac{6}{{13}} + \dfrac{1}{2} + \dfrac{4}{3}\)
\(\begin{array}{l} = \dfrac{1}{2} + \dfrac{{ - 7}}{{13}} + \dfrac{{ - 1}}{3} + \dfrac{{ - 6}}{{13}} + \dfrac{1}{2} + \dfrac{4}{3}\\ = \left( {\dfrac{1}{2} + \dfrac{1}{2}} \right) + \left( {\dfrac{{ - 7}}{{13}} + \dfrac{{ - 6}}{{13}}} \right) + \left( {\dfrac{{ - 1}}{3} + \dfrac{4}{3}} \right)\end{array}\)
\( = \dfrac{{1 + 1}}{2} + \dfrac{{( - 7) + ( - 6)}}{{13}} + \dfrac{{ - 1 + 4}}{3}\)
\( = \dfrac{2}{2} + \dfrac{{ - 13}}{{13}} + \dfrac{3}{3}\)
\( = 1 + ( - 1) + 1\)
\( = 1\)
Do \(0 < 1 < 2\) nên \(0 < B < 2\).
Giá trị \(x\) thỏa mãn \(\dfrac{1}{{5}} - x = \dfrac{7}{{15}}\) là:
\(\begin{array}{l}\dfrac{1}{{5}} - x = \dfrac{7}{{15}}\\x = \dfrac{1}{{5}} - \dfrac{7}{{15}}\\x = \dfrac{{ - 4}}{{15}}\end{array}\)
Vậy \(x = \dfrac{{ - 4}}{{15}}\).