Tính: \({\left( {\frac{{ - 3}}{7}} \right)^3}\)
\({\left( {\frac{{ - 3}}{7}} \right)^3} = \left( {\frac{{ - 3}}{7}} \right).\left( {\frac{{ - 3}}{7}} \right).\left( {\frac{{ - 3}}{7}} \right) = \frac{{( - 3).( - 3).( - 3)}}{{7.7.7}} = \frac{{ - 27}}{{343}}\)
Chọn câu sai. Với hai số hữu tỉ \(a,\,b\) và các số tự nhiên \(m,\,n\) ta có
Ta có ${a^m}.{a^n} = {a^{m + n}}$, ${\left( {a.b} \right)^m} = {a^m}.{b^m}$ và \({\left( {{a^m}} \right)^n} = {a^{m.n}}\) nên C sai.
Tính 94 . 35
Ta có: 94 . 35 = (32)4 . 35 = 32.4 . 35 = 38 . 35 = 38+5 = 313
Tính:
\(8:{\left( {\dfrac{2}{3} - \dfrac{3}{4}} \right)^2}\)
\(8:{\left( {\dfrac{2}{3} - \dfrac{3}{4}} \right)^2} = 8:{\left( {\dfrac{8}{{12}} - \dfrac{9}{{12}}} \right)^2}\)\( = 8:{\left( {\dfrac{{ - 1}}{{12}}} \right)^2} = 8:\dfrac{1}{{144}} = 8.144\)\( = 1152\)
Chọn khẳng định đúng. Với số hữu tỉ \(x\) ta có
Ta có \({x^1} = x;\)\({x^0} = 1\)\(\left( {x \ne 0} \right)\) nên A, B, C sai
${\left( {\dfrac{x}{y}} \right)^n} = \dfrac{{{x^n}}}{y^n}\left( {y \ne 0;\,n \in \mathbb{N}} \right)$ nên D đúng.
Chọn khẳng định đúng:
+) (-4)3 . 45 = - 43 . 45 = - 43+5 = - 48
Vậy A sai
+) am : an = am-n
Vậy B sai
+) (-6)2021 = - 62021 ( vì 2021 là số lẻ)
Vậy C sai
+) [(-3)2]5 = (32)5 = 32.5 = 310
Vậy D đúng
Tìm x, biết: 27x . 34 = 95
27x . 34 = 95
\( \Rightarrow \) (33)x . 34 = (32)5
\( \Rightarrow \)33.x . 34 = 310
\( \Rightarrow \)33x = 310 : 34
\( \Rightarrow \)33x = 36
\( \Rightarrow \)3x = 6
\( \Rightarrow \)x = 2
Vậy x = 2
Chọn câu sai.
Ta có ${\left( {-2019} \right)^0} = 1$ nên A đúng.
+) ${4^6}:{\rm{ }}{4^4} = {4^2} = 16$ nên C đúng
+) ${\left( {-3} \right)^3}.{\left( {-{\rm{ }}3} \right)^{{\rm{ }}2}} = {\left( { - 3} \right)^{3 + 2}} = {\left( { - 3} \right)^5}$nên D đúng
+) $\left( {0,5} \right).{\left( {0,5} \right)^2} = {\left( {0,5} \right)^3} = {\left( {\dfrac{1}{2}} \right)^3} = \dfrac{1}{8}$ nên B sai.
Tính A = 1 + 3 + 32 +…+ 32022
Ta có: A = 1 + 3 + 32 +…+ 32022
\( \Rightarrow \)3.A = 3. ( 1 + 3 + 32 +…+ 32022) = 3 + 32 + 33 +…+ 32023
\( \Rightarrow \) 3. A – A = 3 + 32 + 33 +…+ 32023 – (1 + 3 + 32 +…+ 32022)
2A = 3 + 32 + 33 +…+ 32023 – 1 - 3 - 32 - …- 32022 = 32023 – 1
\( \Rightarrow A = \frac{{{3^{2023}} - 1}}{2}\)
Số ${2^{24}}$ viết dưới dạng lũy thừa có số mũ $8$ là:
Ta có: \({2^{24}} = {2^{3.8}} = {\left( {{2^3}} \right)^8} = {8^8}\)
Biết khối lượng của Mặt Trời là khoảng 1 988 550 . 1021 tấn, khối lượng của Trái Đất khoảng 0,6 . 1022 tấn. Khối lượng của Mặt Trời gấp khoảng bao nhiêu lần khối lượng Trái Đất?
Khối lượng của Mặt Trời gấp khoảng số lần khối lượng Trái Đất là:
\(\frac{{1{\rm{ }}988{\rm{ }}550{\rm{ }}.{\rm{ }}{{10}^{21}}}}{{0,{{6.10}^{22}}}} = \frac{{1{\rm{ }}988{\rm{ }}550{\rm{ }}.{\rm{ }}{{10}^{21}}}}{{{{6.10}^{21}}}} = 331425\) ( lần)
Tìm x biết: (2x+1)3 – 1 = -344
(2x+1)3 – 1 = -344
\( \Leftrightarrow \)(2x+1)3 = -344 + 1
\( \Leftrightarrow \)(2x+1)3 = -343
\( \Leftrightarrow \)(2x+1)3 = (-7)3
\( \Leftrightarrow \)2x + 1 = -7
\( \Leftrightarrow \)2x = -7 – 1
\( \Leftrightarrow \)2x = -8
\( \Leftrightarrow \)x = -4
Vậy x = -4
Số $a$ thỏa mãn $a:{\left( {\dfrac{1}{3}} \right)^4} = {\left( {\dfrac{1}{3}} \right)^3}$ là :
$a{\rm{ }}:{\left( {\dfrac{1}{3}} \right)^4} = {\left( {\dfrac{1}{3}} \right)^3}$
$a = {\left( {\dfrac{1}{3}} \right)^3}.{\left( {\dfrac{1}{3}} \right)^4}$
$a = {\left( {\dfrac{1}{3}} \right)^{3 + 4}}$
$a = {\left( {\dfrac{1}{3}} \right)^7}$
Tính giá trị biểu thức \(M = \frac{{ - {x^2} + 2x - 1}}{{{{(2x)}^3}}}\) tại x = 3
Thay x = 3 vào M ta được:
\(\begin{array}{l}M = \frac{{ - {x^2} + 2x - 1}}{{{{(2x)}^3}}}\\ = \frac{{ - {3^2} + 2.3 - 1}}{{{{(2.3)}^3}}}\\ = \frac{{ - 9 + 6 - 1}}{{{6^3}}}\\ = \frac{{ - 4}}{{216}}\\ = \frac{{ - 1}}{{54}}\end{array}\)
Cho ${20^n}\;:\;{5^n} = 4$ thì :
\({20^n}\;:\;{5^n} = 4\)
\({(20:5)^n} = 4\)
\({4^n} = 4\)
\(n = 1\)
Cho biểu thức $A = \dfrac{{{2^7}{{.9}^3}}}{{{6^5}{{.8}^2}}}$. Chọn khẳng định đúng.
$A = \dfrac{{{2^7}{{.9}^3}}}{{{6^5}{{.8}^2}}} = \dfrac{{{2^7}.{{\left( {{3^2}} \right)}^3}}}{{{2^5}{{.3}^5}.{{\left( {{2^3}} \right)}^2}}} = \dfrac{{{2^7}{{.3}^6}}}{{{2^5}{{.2}^6}{{.3}^5}}}$$ = \dfrac{{{2^7}{{.3}^6}}}{{{2^{11}}{{.3}^5}}} = \dfrac{{1.3}}{{{2^4}.1}} = \dfrac{3}{{16}}$
Giá trị của biểu thức \(\dfrac{{{4^6}{{.9}^5} + {6^9}.120}}{{{8^4}{{.3}^{12}} - {6^{11}}}}\) là
Ta có \(\dfrac{{{4^6}{{.9}^5} + {6^9}.120}}{{{8^4}{{.3}^{12}} - {6^{11}}}} = \dfrac{{{{\left( {{2^2}} \right)}^6}.{{\left( {{3^2}} \right)}^5} + {6^9}.120}}{{{{\left( {{2^3}} \right)}^4}{{.3}^{12}} - {6^{11}}}}\)\( = \dfrac{{{2^{12}}{{.3}^{10}} + {6^9}.6.20}}{{{2^{12}}{{.3}^{12}} - {6^{11}}}} = \dfrac{{{2^2}{{.2}^{10}}{{.3}^{10}} + {6^{10}}.20}}{{{{\left( {2.3} \right)}^{12}} - {6^{11}}}}\)\( = \dfrac{{{2^2}{{.6}^{10}} + {6^{10}}.20}}{{{6^{12}} - {6^{11}}}}\)\( = \dfrac{{{6^{10}}\left( {{2^2} + 20} \right)}}{{{6^{10}}\left( {{6^2} - 6} \right)}} = \dfrac{{24}}{{30}} = \dfrac{4}{5}\)
Tìm \(x\), biết \({\left( {5x - 1} \right)^6} = 729\)
\({\left( {5x - 1} \right)^6} = 729\)
\({\left( {5x - 1} \right)^6} = {(3)^6}\)
Trường hợp 1:
$\begin{array}{l}5x-1 = 3\\5x = 4\\x = \dfrac{4}{5}\end{array}$
Trường hợp 2:
$\begin{array}{l}5x-1 = - 3\\5x = - 2\\x = - \dfrac{2}{5}\end{array}$
Vậy \(x = \dfrac{4}{5}\) hoặc \(x = - \dfrac{2}{5}\)
Có bao nhiêu giá trị của \(x\) thỏa mãn \({\left( {2x + 1} \right)^3} = - 0,001\)?
\({\left( {2x + 1} \right)^3} = - {0,1^3} = {\left( { - 0,1} \right)^3}\)
\(2x + 1 = - 0,1\)
\(2x = - 0,1 - 1\)
\(2x = - 1,1\)
\(x = - 1,1:2\)
\(x = - 0,55\)
Vậy $x = - 0,55$.
Tìm số tự nhiên \(n\) thỏa mãn \({5^n} + {5^{n + 2}} = 650\).
\({5^n} + {5^{n + 2}} = 650\)
\({5^n} + {5^n}{.5^2} = 650\)
\({5^n}\left( {1 + {5^2}} \right) = 650\)
\({5^n}\left( {1 + 25} \right) = 650\)
\({5^n}.26 = 650\)
\({5^n} = 650:26\)
\({5^n} = 25\)
\({5^n} = {5^2}\)
\(n = 2\)
Vậy $n = 2$