Tính: \(\frac{2}{3} - \frac{{ - 3}}{7}\)
\(\frac{2}{3} - \frac{{ - 3}}{7} = \frac{2}{3} + \frac{3}{7} = \frac{{14}}{{21}} + \frac{9}{{21}} = \frac{{23}}{{21}}\)
Thực hiện phép tính:
\(\frac{{ - 2}}{3} + \frac{2}{5}:\frac{{ - 3}}{5}\)
\(\frac{{ - 2}}{3} + \frac{2}{5}:\frac{{ - 3}}{5} = \frac{{ - 2}}{3} + \frac{2}{5}.\frac{{ - 5}}{3} = \frac{{ - 2}}{3} + \frac{{ - 2}}{3} = \frac{{ - 4}}{3}\)
Chọn kết luận đúng nhất về kết quả của phép tính \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}}\)
Ta có \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}} = \dfrac{{ - 4}}{{26}} + \dfrac{{ - 11}}{{26}} = \dfrac{{ - 15}}{{26}}\)
Do đó kết quả là số hữu tỉ âm.
Kết quả của phép tính \( - \dfrac{6}{7}.\dfrac{{21}}{{12}}\) là
Ta có \( - \dfrac{6}{7}.\dfrac{{21}}{{12}} = - \dfrac{6}{7}.\dfrac{7}{4} = \dfrac{{ - 6}}{4} = - \dfrac{3}{2}\)
Tính:
\(3\frac{1}{2} - \frac{2}{3}:\frac{5}{{ - 3}} - 0,3\)
\(\begin{array}{l}3\frac{1}{2} - \frac{2}{3}:\frac{5}{{ - 3}} - 0,3\\ = \frac{7}{2} - \frac{2}{3}.\frac{{ - 3}}{5} - \frac{3}{{10}}\\ = \frac{7}{2} - \frac{{ - 2}}{5} - \frac{3}{{10}}\\ = \frac{7}{2} + \frac{2}{5} - \frac{3}{{10}}\\ = \frac{{35}}{{10}} + \frac{4}{{10}} - \frac{3}{{10}}\\ = \frac{{36}}{{10}}\\ = \frac{{18}}{5}\\ = 3\frac{3}{5}\end{array}\)
Tìm x biết:
\( - 0,12 - 2x = - 1\frac{2}{5}\)
\(\begin{array}{l} - 0,12 - 2x = - 1\frac{2}{5}\\ \Leftrightarrow \frac{{ - 12}}{{100}} - 2x = \frac{{ - 7}}{5}\\ \Leftrightarrow \frac{{ - 3}}{{25}} - 2x = \frac{{ - 7}}{5}\\ \Leftrightarrow 2x = \frac{{ - 3}}{{25}} - (\frac{{ - 7}}{5})\\ \Leftrightarrow 2x = \frac{{ - 3}}{{25}} + \frac{{35}}{{25}}\\ \Leftrightarrow 2x = \frac{{32}}{{25}}\\ \Leftrightarrow x = \frac{{32}}{{25}}:2\\ \Leftrightarrow x = \frac{{32}}{{25}}.\frac{1}{2}\\ \Leftrightarrow x = \frac{{16}}{{25}}\end{array}\)
Số \(\dfrac{{ - 3}}{{14}}\) viết thành hiệu của hai số hữu tỉ dương nào dưới đây?
\(\dfrac{{ - 3}}{{14}} = \dfrac{{7 - 10}}{{14}} = \dfrac{7}{{14}} - \dfrac{{10}}{{14}} \)\(= \dfrac{1}{2}-\dfrac{5}{7}\) nên C đúng
+) Đáp án B: \(\dfrac{1}{{14}} - \dfrac{1}{7} = \dfrac{1}{{14}} - \dfrac{2}{{14}} = \dfrac{{ - 1}}{{14}}\ne \dfrac{{ - 3}}{{14}}\) nên loại B.
+) Đáp án A: \(\dfrac{2}{3} - \dfrac{5}{7} = \dfrac{{14}}{{21}} - \dfrac{{15}}{{21}} = \dfrac{{ - 1}}{{21}}\ne \dfrac{{ - 3}}{{14}}\) nên loại A.
+) Đáp án D: \(\dfrac{3}{{14}} - \dfrac{5}{{14}} = \dfrac{{ - 2}}{{14}} = \dfrac{{ - 1}}{7}\ne \dfrac{{ - 3}}{{14}}\) nên loại D.
Kết quả của phép tính $\dfrac{3}{2}.\dfrac{4}{7}$ là
Ta có $\dfrac{3}{2}.\dfrac{4}{7} = \dfrac{{3.4}}{{2.7}} = \dfrac{6}{7} > 0$
Tính: \(M = \dfrac{{11}}{{20}}.68 - 4,2.2022\)\( + 4\dfrac{1}{5}.2022 - 68.( - 0,45)\)
\(M = \dfrac{{11}}{{20}}.68 - 4,2.2022 + 4\dfrac{1}{5}.2022 \)\(- 68.( - 0,45)\)\( = 0,55.68 - 4,2.2022 + 4,2.2022 \)\(+ 68.0,45\)\( = (0,55.68 + 68.0,45) \)\(+ ( - 4,2.2022 + 4,2.2022)\)\(= 68.(0,55 + 0,45) + 0\)\( = 68.1\\ = 68\)
Tìm x thỏa mãn:
\(\frac{{x + \frac{3}{2}}}{6} = \frac{{ - 5}}{{12}}\)
\(\begin{array}{l}\frac{{x + \frac{3}{2}}}{6} = \frac{{ - 5}}{{12}}\\ \Leftrightarrow \frac{{2.(x + \frac{3}{2})}}{{12}} = \frac{{ - 5}}{{12}}\\ \Leftrightarrow \frac{{2x + 3}}{{12}} = \frac{{ - 5}}{{12}}\\ \Leftrightarrow 2x + 3 = - 5\\ \Leftrightarrow 2x = - 5 - 3\\ \Leftrightarrow 2x = - 8\\ \Leftrightarrow x = - 4\end{array}\)
Vậy x = -4
Cho $x + \dfrac{1}{2} = \dfrac{3}{4}$. Giá trị của x bằng:
$x + \dfrac{1}{2} = \dfrac{3}{4}$
$x\,\, = \dfrac{3}{4} - \dfrac{1}{2}$
\(x = \dfrac{3}{4} - \dfrac{2}{4}\)
\(x = \dfrac{1}{4}\)
Cho \(A = \dfrac{{ - 5}}{6}.\dfrac{{12}}{{ - 7}}.\left( {\dfrac{{ - 21}}{{15}}} \right);\,B = \dfrac{1}{6}.\dfrac{9}{{ - 8}}.\left( {\dfrac{{ - 12}}{{11}}} \right)\) . So sánh \(A\) và \(B\).
Ta có
\(A = \dfrac{{ - 5}}{6}.\dfrac{{12}}{{ - 7}}.\left( {\dfrac{{ - 21}}{{15}}} \right) = \dfrac{{\left( { - 5} \right).12.\left( { - 21} \right)}}{{6.\left( { - 7} \right).15}} = \dfrac{{\left( { - 5} \right).2.6.\left( { - 7} \right).3}}{{6.\left( { - 7} \right).5.3}} = - 2\)
\(B = \dfrac{1}{6}.\dfrac{9}{{ - 8}}.\left( {\dfrac{{ - 12}}{{11}}} \right) = \dfrac{{9.\left( { - 12} \right)}}{{6.\left( { - 8} \right).11}} = \dfrac{9}{{44}}\)
Suy ra \(A < B\) .
Tính: \(\frac{{\frac{3}{{11}} + \frac{3}{{17}} - \frac{3}{{23}} + \frac{3}{{29}}}}{{\frac{7}{{11}} + \frac{7}{{17}} - \frac{7}{{23}} + \frac{7}{{29}}}}\)
Ta có:
\(\begin{array}{l}\frac{{\frac{3}{{11}} + \frac{3}{{17}} - \frac{3}{{23}} + \frac{3}{{29}}}}{{\frac{7}{{11}} + \frac{7}{{17}} - \frac{7}{{23}} + \frac{7}{{29}}}}\\ = \frac{{3.(\frac{1}{{11}} + \frac{1}{{17}} - \frac{1}{{23}} + \frac{1}{{29}})}}{{7.(\frac{1}{{11}} + \frac{1}{{17}} - \frac{1}{{23}} + \frac{1}{{29}})}}\\ = \frac{3}{7}\end{array}\)
Có bao nhiêu số nguyên x thỏa mãn:
(2x + 7) . ( x – 1) < 0
Ta xét 2 trường hợp sau:
+ Trường hợp 1:
\[\left\{ {_{x - 1 > 0}^{2x + 7 < 0}} \right. \Leftrightarrow \left\{ {_{x > 1}^{2x < - 7}} \right. \Leftrightarrow \left\{ {_{x > 1}^{x < \frac{{ - 7}}{2}}} \right.\] ( Vô lí)
+ Trường hợp 2:
\[\left\{ {_{x - 1 < 0}^{2x + 7 > 0}} \right. \Leftrightarrow \left\{ {_{x < 1}^{2x > - 7}} \right. \Leftrightarrow \left\{ {_{x < 1}^{x > \frac{{ - 7}}{2}}} \right. \Leftrightarrow \frac{{ - 7}}{2} < x < 1\]
Mà x nguyên
\( \Rightarrow x \in \{ - 3; - 2; - 1;0\} \)
Vậy có 4 giá trị của x thỏa mãn
Kết luận nào đúng khi nói về giá trị của biểu thức \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)
Ta có \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)
\( = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{2}{8} + \dfrac{3}{8}} \right)} \right]\)
\( = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \dfrac{5}{8}} \right]\)
\( = \dfrac{1}{3} - \left[ {\left( { - \dfrac{{10}}{8}} \right) - \dfrac{5}{8}} \right]\)
\( = \dfrac{1}{3} - \left( { - \dfrac{{15}}{8}} \right)\)
\( = \dfrac{1}{3} + \dfrac{{15}}{8}\)
\( = \dfrac{8}{{24}} + \dfrac{{45}}{{24}}\)
\( = \dfrac{{53}}{{24}}\)
Vậy $A = \dfrac{{53}}{{24}} > \dfrac{{48}}{{24}} = 2$ hay \(A > 2\) .
Tìm số $x$ thoả mãn: \(x:\left( {\dfrac{2}{5} - 1\dfrac{2}{5}} \right) = 1.\)
Ta có \(x:\left( {\dfrac{2}{5} - 1\dfrac{2}{5}} \right) = 1\)
\(x:\left( {\dfrac{2}{5} - \dfrac{7}{5}} \right) = 1\)
\(x:\left( {\dfrac{{ - 5}}{5}} \right) = 1\)
\(x:\left( { - 1} \right) = 1\)
\(x = 1.\left( { - 1} \right)\)
\(x = - 1\)
Vậy \(x = - 1\) .
Tính: \((\frac{1}{3} - 1).(\frac{1}{4} - 1)....(\frac{1}{{2022}} - 1)\)
\(\begin{array}{l}(\frac{1}{3} - 1).(\frac{1}{4} - 1)....(\frac{1}{{2022}} - 1)\\ = \frac{{ - 2}}{3}.\frac{{ - 3}}{4}.....\frac{{ - 2021}}{{2022}}\\ = \frac{2}{{2022}}\\ = \frac{1}{{1011}}\end{array}\)
Cho $P = 3 + 30 + 33 + 36 +…+ 3300.$
Tìm số $x$ sao cho $P - 3 = 5x$
Lời giải
Đặt $Q = P – 3 = 3 + 30 + 33 + 36 +…+ 3300 – 3 = 30 + 33 + 36 +…+ 3300$
Số số hạng của tổng Q là:
\[\dfrac{{3300 - 30}}{3} + 1 = 1091\]
Tổng Q là: \(\dfrac{{(3300 + 30).1091}}{2} = 1816515\)
Ta được $5x = 1816515$
Do đó:$ x = 1816515 : 5 = 363 303$
Cho các số hữu tỉ \(x = \dfrac{a}{b},y = \dfrac{c}{d}\,\,(a,b,c,d \in Z,b \ne 0,d \ne 0).\) Tổng $x + y$ bằng:
\(x + y = \dfrac{a}{b} + \dfrac{c}{d} = \dfrac{{ad}}{{bd}} + \dfrac{{cb}}{{bd}} = \dfrac{{ad + cb}}{{bd}}.\)
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)?
Ta có \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)
\(\dfrac{1}{3}x + \dfrac{2}{5}x - \dfrac{2}{5} = 0\)
\(\dfrac{1}{3}x + \dfrac{2}{5}x = \dfrac{2}{5}\)
\(x\left( {\dfrac{1}{3} + \dfrac{2}{5}} \right) = \dfrac{2}{5}\)
\(x.\left( {\dfrac{5}{{15}} + \dfrac{6}{{15}}} \right) = \dfrac{2}{5}\)
\(x.\dfrac{{11}}{{15}} = \dfrac{2}{5}\)
\(x = \dfrac{2}{5}:\dfrac{{11}}{{15}}\)
\(x = \dfrac{2}{5}.\dfrac{{15}}{{11}}\)
\(x = \dfrac{{2.15}}{{5.11}}\)
\(x = \dfrac{6}{{11}}\)
Vậy có một giá trị của \(x\) thoả mãn điều kiện.