Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Sách chân trời sáng tạo
Một hình hộp chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng $6\,cm$ . Một kích thước của đáy bằng $10\,cm$ , tính kích thước còn lại.
Đặt $AD = x$ .
Diện tích xung quanh bằng:
$2\left( {10 + x} \right).6\left( {c{m^2}} \right)$
Tổng diện tích hai đáy bằng $2.10x\left( {c{m^2}} \right)$
Ta có $2\left( {10 + x} \right).6{\rm{ }} = {\rm{ }}2.10x \Leftrightarrow 60 + 6x = 10x \Leftrightarrow x = 15$
Kích thước còn lại của đáy bằng $15cm$ .
Cho hình lăng trụ tam giác đều $ABC.A'B'C'$ có chiều cao bằng $2cm$ , \(\widehat {BAB'} = {45^0}\) . Tính diện tích xung quanh của hình lăng trụ.
Tam giác vuông $ABB'$ có \(\widehat {BAB'} = {45^0}\) nên là tam giác vuông cân tại \(B\) nên $AB = BB' = 2cm$ .
Vì tam giác \(ABC\) đều nên chu vi đáy bằng $3AB = 3.2 = 6cm$
Diện tích xung quanh bằng $6.2 = 12\left( {c{m^2}} \right).$
Một hình hộp chữ nhật có diện tích xung quanh bằng $120\,c{m^2}$ , chiều cao bằng $6cm$ . Tìm các kích thước của đáy để hình hộp chữ nhật có thể tích lớn nhất.
Gọi $a$ và $b$ là các kích thước của đáy.
Ta có $V = 6ab$ nên $V$ lớn nhất \( \Leftrightarrow \) $ab$ lớn nhất
\({S_{xq}} = 120\) nên \(2\left( {a + b} \right).6 = 120\) hay \(a + b = 10\).
Ta có: \(ab = a\left( {10 - a} \right) = - {a^2} + 10a = - {\left( {a - 5} \right)^2} + 25 \le 25\).
Suy ra \(V = 6ab \le 6.25 = 150\).
Thể tích lớn nhất bằng \(150\) \({\rm{c}}{{\rm{m}}^3}\) khi \(a = b = 5\), tức là các cạnh đáy bằng $5$ cm.
Tính thể tích của hình lăng trụ đứng có chiều cao $20\,{\rm{cm}}$, đáy là một tam giác vuông có các cạnh góc vuông bằng $8\,{\rm{cm}}$ và $10\,{\rm{cm}}$.
Vì đáy là tam giác vuông nên diện tích đáy \(S = \dfrac{{8.10}}{2} = 40\,cm\) .
Thể tích lăng trụ đứng là \(V = S.h = 40.20 = 800\,c{m^3}\) .
Cho một hình lăng trụ đứng có diện tích đáy là $S$ , chiều cao là $h$ . Hỏi công thức tính thể tích hình lăng trụ đứng là gì?
Công thức tính thể tích hình lăng trụ đứng là: $V = S.h$
Tính thể tích của hình lăng trụ đứng sau:
Hình lăng trụ đứng đã cho được tạo thành từ 2 hình hộp chữ nhật. Hình hộp chữ nhật thứ nhất có kích thước là
\(3cm,\;\;1cm,\;\;2cm;\) hình hộp chữ nhật thứ hai có kích thước là \(2cm,\;\;4cm,\;\;2cm.\)
Thể tích hình hộp chữ nhật thứ nhất là: \({V_1} = 3.1.2 = 6\;c{m^3}\)
Thể tích hình hộp chữ nhật thứ hai là: \({V_2} = 2.4.2 = 16\;c{m^3}\)
Thể tích hình lăng trụ đứng là: \(V = {V_1} + {V_2} = 6 + 16 = 22\;c{m^3}\)
Một lăng trụ đứng có đáy là hình chữ nhật có các kích thức $3$ cm, $8$ cm. Chiều cao của hình lăng trụ đứng là $2$cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đứng.
Diện tích xung quanh \({S_{xq}} = 2.(8 + 3).2 = 44\;c{m^2}\)
Thể tích của hình lăng trụ đứng là:\(V = 8.3.2 = 48\;c{m^3}\)