Lũy thừa của một số hữu tỉ

Sách chân trời sáng tạo

Đổi lựa chọn

Câu 21 Trắc nghiệm

Cho biết : \({1^2} + {2^2} + {3^2} + ... + {10^2} = 385\) . Tính nhanh giá trị của biểu thức sau:

\(S = \left( {{{12}^2} + {{14}^2} + {{16}^2} + {{18}^2} + {{20}^2}} \right)\)\( - \left( {{1^2} + {3^2} + {5^2} + {7^2} + {9^2}} \right)\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \({1^2} + {2^2} + {3^2} + ... + {10^2} = 385\)

Suy ra \({1^2} + {3^2} + {5^2} + {7^2} + {9^2}\)\( = 385 - \left( {{2^2} + {4^2} + {6^2} + {8^2} + {{10}^2}} \right)\)\( = 385 - {2^2}\left( {{1^2} + {2^2} + {3^2} + {4^2} + {5^2}} \right)\)

Và \({12^2} + {14^2} + {16^2} + {18^2} + {20^2} \)\(= {2^2}.\left( {{6^2} + {7^2} + {8^2} + {9^2} + {{10}^2}} \right)\)

Suy ra \(S = {2^2}.({6^2} + {7^2} + {8^2} + {9^2} + {{10}^2})\)\( - 385 + {2^2}({1^2} + {2^2} + {3^2} + {4^2} + {5^2})\)

 \(S = 2^2.( {1^2} + {2^2} + {3^2} + {4^2} + {5^2} + {6^2} \)\(+ {7^2} + {8^2} + {9^2} + {10}^2 ) - 385 \)\(= 4.385 - 385 = 1155\)

Vậy $S = 1155$.

Câu 22 Trắc nghiệm

Cho \(A = 1 - \dfrac{3}{4} + {\left( {\dfrac{3}{4}} \right)^2} - {\left( {\dfrac{3}{4}} \right)^3} + {\left( {\dfrac{3}{4}} \right)^4} - ... - {\left( {\dfrac{3}{4}} \right)^{2017}} + {\left( {\dfrac{3}{4}} \right)^{2018}}\). Chọn đáp án đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

\(A = 1 - \dfrac{3}{4} + {\left( {\dfrac{3}{4}} \right)^2} - {\left( {\dfrac{3}{4}} \right)^3} + {\left( {\dfrac{3}{4}} \right)^4} - ... - {\left( {\dfrac{3}{4}} \right)^{2017}} + {\left( {\dfrac{3}{4}} \right)^{2018}}\)

\( \Rightarrow \dfrac{3}{4}A = \dfrac{3}{4} - {\left( {\dfrac{3}{4}} \right)^2} + {\left( {\dfrac{3}{4}} \right)^3} - {\left( {\dfrac{3}{4}} \right)^4} + ...\) \( + {\left( {\dfrac{3}{4}} \right)^{2017}} - {\left( {\dfrac{3}{4}} \right)^{2018}} + {\left( {\dfrac{3}{4}} \right)^{2019}}\)  

\( \Rightarrow A + \dfrac{3}{4}A = 1 + {\left( {\dfrac{3}{4}} \right)^{2019}}\)

\( \Rightarrow \left( {1 + \dfrac{3}{4}} \right)A = 1 + {\left( {\dfrac{3}{4}} \right)^{2019}}\)

\( \Rightarrow \dfrac{7}{4}.A = 1 + {\left( {\dfrac{3}{4}} \right)^{2019}}\)

\( \Rightarrow A = \left[ {1 + {{\left( {\dfrac{3}{4}} \right)}^{2019}}} \right]:\dfrac{7}{4} = \left[ {1 + {{\left( {\dfrac{3}{4}} \right)}^{2019}}} \right].\dfrac{4}{7}\)

Suy ra \(A > 0\,\,\,\,\,\,\,\left( 1 \right)\)

Vì \({\left( {\dfrac{3}{4}} \right)^{2019}} < \dfrac{3}{4} \Rightarrow A < \left( {1 + \dfrac{3}{4}} \right).\dfrac{4}{7} = 1\,\,\,\,\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(0 < A < 1\).

Vậy \(A\) không phải là số nguyên.