Tiên đề Euclid. Tính chất của các đường thẳng song song
Sách kết nối tri thức với cuộc sống
Em hãy chọn phát biểu sai trong các phát biểu sau:
- Hai đường thẳng không có điểm chung thì song song (đúng, theo định nghĩa hai đường thẳng song song)
- Qua điểm M nằm ngoài một đường thẳng có một và chỉ một đường thẳng song song với đường thẳng ấy (đúng, theo tiên đề Ơ-clit)
- Hai đường thẳng không cắt nhau là hai đường thẳng phân biệt. (sai, vì nó có thể là 2 đường thẳng trùng nhau)
- Nếu một đường thẳng cắt hai đường thẳng tạo thành hai góc so le trong bằng nhau thì hai đường thẳng đó song song (đúng, theo dấu hiệu nhận biết hai đường thẳng song song)
Qua điểm M ở ngoài đường thẳng a cho trước, vẽ được bao nhiêu đường thẳng song song với đường thẳng đó?
Theo tiên đề Ơ-clit ta có: Qua điểm M ở ngoài đường thẳng a cho trước, vẽ được duy nhất một đường thẳng song song với đường thẳng đó.
Cho hình vẽ sau, biết \(x//y\) và \(\widehat {{M_1}} = {55^0}\). Tính \(\widehat {{N_1}}\).
Ta có: \(\widehat {{M_1}} + \widehat {{M_2}} = {180^0} \Rightarrow \widehat {{M_2}} = {180^0} - {55^0} = {125^0}\) (kề bù)
Vì \(x//y\left( {gt} \right) \Rightarrow \widehat {{M_2}} = \widehat {{N_1}} = {125^0}\) (2 góc đồng vị)
Cho hình vẽ sau:
Biết \(a \bot d,\,b \bot d,\,\widehat {A{\rm{D}}F} = {72^0}\). Tính \(\widehat {DFB}\).
Vì \(\left\{ \begin{array}{l}a \bot d\\b \bot d\end{array} \right. \Rightarrow a\,//\,b\) (quan hệ giữa tính vuông góc với tính song song)
\( \Rightarrow \widehat {ADF} + \widehat {DFB} = {180^0} \)(2 góc trong cùng phía bù nhau)
\(\Rightarrow \widehat {DFB} = {180^0} - \widehat {ADF}\) \( = {180^0} - {72^0} = {108^0}\)
Cho hình vẽ sau, biết \(a//b\) và \(\widehat {{A_1}} = {100^0}\). Tính \(\widehat {{B_1}},\widehat {{B_2}}\).
Vì \(a//b\left( {gt} \right) \Rightarrow \widehat {{A_1}} = \widehat {{B_1}}\, = {100^0}\) (hai góc so le trong)
Ta có : \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \) ( 2 góc kề bù)
\(\begin{array}{l} \Rightarrow 100^\circ + \widehat {{B_2}} = 180^\circ \\ \Rightarrow \widehat {{B_2}} = 180^\circ - 100^\circ = 80^\circ \end{array}\)
Chọn câu đúng.
Tiên đề Ơ-clit: “Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song song với đường thẳng đó.”
Cho hai đường thẳng $a$ và $b$ cùng vuông góc với đường thẳng $c,$ $c$ vuông góc với $a$ tại $M$ và vuông góc với $b$ tại $N.$ Một đường thẳng $m$ cắt $a,b$ tại $A,B.$ Biết \(\widehat {ABN} - \widehat {MAB} = 40^\circ \). Số đo góc $BAM$ là:
Từ đề bài ta có \(a \bot c;b \bot c \Rightarrow a//b\) (quan hệ từ vuông góc đến song song)
Suy ra \(\widehat {ABN} + \widehat {MAB} = 180^\circ \) (hai góc trong cùng phía bù nhau)
mà \(\widehat {ABN} - \widehat {MAB} = 40^\circ \)
nên \(\widehat {ABN} = \dfrac{{180^\circ + 40^\circ }}{2} = 110^\circ \) và \(\widehat {MAB} = 180^\circ - \widehat {ABN} \)\(= 180^\circ - 110^\circ = 70^\circ \)
Vậy \(\widehat {BAM} = 70^\circ .\)
Cho ba đường thẳng phân biệt a, b, c, biết \(a//b\) và \(b//c\) . Chọn kết luận đúng:
Ta có:
\(\left\{ \begin{array}{l}a//b\\b//c\end{array} \right. \Rightarrow a//\,c\)(Hai đường thẳng cùng cùng song song với một đường thẳng thứ ba thì song song với nhau)
Cho hình vẽ sau:
Biết \(a//\,b,\,\widehat {BC{\rm{D}}} = {120^0}\) và $a \bot AB$. Kết luận nào sau đây là đúng:
Ta có: \(\left\{ \begin{array}{l}a\,//\,b\\AB \bot a\end{array} \right. \Rightarrow AB \bot b\) (quan hệ giữa tính vuông góc với tính song song)
Vì \(a//\,b\left( {gt} \right) \Rightarrow \widehat {A{\rm{D}}C} + \widehat {BC{\rm{D}}} = {180^0}\) (2 góc trong cùng phía bù nhau)
\( \Rightarrow \widehat {A{\rm{D}}C} = {180^0} - \widehat {BC{\rm{D}}} = {180^0} - {120^0} = {60^0}\)
Cho hình vẽ sau:
Biết \(a \bot d,\,b \bot d,\,\widehat {A{\rm{D}}E} = {130^0}\). Tính \(\widehat {DEB}\).
Vì \(a \bot d,\,b \bot d\) nên a // b ( Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau).
Mà \(\widehat {{D_1}} + \widehat {ADE} = 180^\circ \) ( 2 góc kề bù)
\(\begin{array}{l} \Rightarrow \widehat {{D_1}} + 130^\circ = 180^\circ \\ \Rightarrow \widehat {{D_1}} = 180^\circ - 130^\circ = 50^\circ \end{array}\)
Vì a // b nên \(\widehat {{D_1}} = \widehat {DEB}\) ( 2 góc đồng vị) nên \(\widehat {DEB}\) = 50\(^\circ \)
Cho hình vẽ sau:
Biết \(AB \bot a,\,AB \bot b,\,\widehat {BFH} = {50^0}\). Tính \(\widehat {AHF}\).
Ta có: \(\left\{ \begin{array}{l}AB \bot a\\AB \bot b\end{array} \right. \Rightarrow a//\,b\) (quan hệ giữa tính vuông góc với tính song song)
\( \Rightarrow \widehat {BFH} = \widehat {AHF} = {50^0}\) (so le trong)
Cho hình vẽ sau:
Biết \(a \bot y,\,b \bot y,\,\widehat {{A_1}} - \widehat {{B_1}} = {38^0}\). Tính \(\widehat {{B_1}}\).
Vì a \( \bot \)y và b \( \bot \)y nên a // b (Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau).
\( \Rightarrow \widehat {{A_1}} = \widehat {{B_2}}\) ( 2 góc đồng vị)
Vì\(\,\widehat {{A_1}} - \widehat {{B_1}} = {38^0} \Rightarrow \widehat {{B_2}} - \widehat {{B_1}} = {38^0}\)
Mà \(\widehat {{B_2}} + \widehat {{B_1}} = 180^\circ \) ( 2 góc kề bù)
\( \Rightarrow \widehat {{B_1}} = \left( {180^\circ - 38^\circ } \right):2 = 71^\circ \)
Cho hình vẽ sau. Tính số đo góc \(BAD.\)
Ta thấy \(AB \bot BC;DC \bot BC\) \( \Rightarrow AB//DC\) (quan hệ từ vuông góc đến song song)
Suy ra \(\widehat {ADC} + \widehat {BAD} = 180^\circ \) (hai góc trong cùng phía bù nhau)
\( \Rightarrow \widehat {BAD} = 180^\circ - \widehat {ADC} = 180^\circ - 85^\circ = 95^\circ \)
Vậy \(\widehat {BAD} = 95^\circ .\)
Cho hình vẽ sau biết a // b. Tính số đo góc ACB
Kẻ đường thẳng d đi qua C, song song với đường thẳng a.
Vì d // a, mà a // b nên d // b ( đường thẳng song song với 1 trong 2 đường thẳng song song thì cũng song song với đường thẳng còn lại)
Vì a // d nên ( 2 góc so le trong), mà
Vì d // b nên \(\widehat {{B_1}} = \widehat {{C_2}}\) ( 2 góc so le trong), mà \(\widehat {{B_1}} = 62^\circ \Rightarrow \widehat {{C_2}} = 62^\circ \)
Mà \(\widehat {ACB} = \widehat {{C_1}} + \widehat {{C_2}} = 30^\circ + 62^\circ = 92^\circ \)
Cho hình vẽ:
Biết \(\widehat {CF{\rm{E}}} = {55^0},\,\widehat {{E_1}} = {125^0}\) . Khi đó:
Vì \(\widehat {{E_1}}\) và \(\widehat {BEF}\) là hai góc kề bù (gt)
\( \Rightarrow \widehat {{E_1}} + \widehat {BEF} = {180^0} \)\(\Rightarrow \widehat {BEF} = {180^0} - \widehat {{E_1}} \)\(= {180^0} - {125^0} = {55^0} \)\(\Rightarrow \widehat {BEF} = \widehat {CFE} = {55^0}\)
Mà \(\widehat {BEF}\) và \(\widehat {CFE}\) là hai góc so le trong nên suy ra \(AB//C{\rm{D}}\) (dấu hiệu nhận biết hai đường thẳng song song)
Lại có \(\widehat {{E_1}}=\widehat {{AEF}}\) (hai góc đối đỉnh) nên \(\widehat {{AEF}}=125^0\)
Vậy cả A, B đều đúng.
Cho hình vẽ sau:
Biết \(a \bot y,\,b \bot y,\,\widehat {{A_1}} - \widehat {{B_1}} = {40^0}\). Tính \(\widehat {{B_1}}\).
Ta có: \(\left\{ \begin{array}{l}a \bot y\\b \bot y\end{array} \right.\left( {gt} \right) \Rightarrow a//\,b\) (quan hệ giữa tính vuông góc với tính song song)
\( \Rightarrow \widehat {{A_1}} + \widehat {{B_1}} = {180^0}\) (2 góc trong cùng phía bù nhau)
Lại có: \(\widehat {{A_1}} - \widehat {{B_1}} = {40^0}\left( {gt} \right) \Rightarrow \widehat {{B_1}} = \left( {{{180}^0} - {{40}^0}} \right):2 = {70^0}\)
Cho hình bình hành ABCD có \(\widehat D = 56^\circ \). Tia Bd là tia phân giác của \(\widehat {ABC}\), cắt AD tại E. Tính số đo góc BED?
Vì ABCD là hình bình hành nên \(\widehat {ABC} = \widehat {ADC}\)( tính chất hình bình hành), mà \(\widehat {ADC} = 56^\circ \Rightarrow \widehat {ABC} = 56^\circ \)
Vì Bd là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABE} = \widehat {CBE} = \frac{1}{2}.\widehat {ABC} = \frac{1}{2}.56^\circ = 28^\circ \)
Vì ABCD là hình bình hành nên AD // BC ( tính chất hình bình hành)
\( \Rightarrow \widehat {AEB} = \widehat {CBE}\) ( 2 góc so le trong)
\( \Rightarrow \widehat {AEB} = 28^\circ \)
Ta có: \(\widehat {AEB} + \widehat {BED} = 180^\circ \) ( 2 góc kề bù)
\(\begin{array}{l} \Rightarrow 28^\circ + \widehat {BED} = 180^\circ \\ \Rightarrow \widehat {BED} = 180^\circ - 28^\circ = 152^\circ \end{array}\)
Cho hình vẽ sau, biết \(x//y\) và \(\widehat {{M_1}} = {55^0}\). Tính \(\widehat {{N_1}}\).
Ta có: \(\widehat {{M_1}} + \widehat {{M_2}} = {180^0} \Rightarrow \widehat {{M_2}} = {180^0} - {55^0} = {125^0}\) (kề bù)
Vì \(x//y\left( {gt} \right) \Rightarrow \widehat {{M_2}} = \widehat {{N_1}} = {125^0}\) (2 góc đồng vị)
Cho hình vẽ sau biết $AD//BC.$ Tính \(\widehat {AGB}.\)
Qua \(G\) kẻ \(GH//AD.\)
Vì \(A{\rm{D}}//\,GH \Rightarrow \widehat {GA{\rm{D}}} + \widehat {AGH} = {180^0} \Rightarrow \widehat {AGH} = {180^0} - \widehat {GA{\rm{D}}} = {180^0} - {110^0} = {70^0}\) (2 góc trong cùng phía bù nhau)
Ta có: \(\left\{ \begin{array}{l}A{\rm{D}}//\,GH\\A{\rm{D}}//\,BC\end{array} \right.\left( {gt} \right) \Rightarrow GH//\,BC\)
\( \Rightarrow \widehat {HGB} + \widehat {GBC} = {180^0} \Rightarrow \widehat {HGB} = {180^0} - \widehat {GBC} = {180^0} - {140^0} = {40^0}\) (2 góc trong cùng phía bù nhau)
\(\widehat {AGB} = \widehat {AGH} + \widehat {HGB} = {70^0} + {40^0} = {110^0}\)
Cho hình sau, biết a // b.
Phát biểu không đúng là:
Vì a // b nên:
\(\widehat {{A_1}} = \widehat {{B_2}}\) ( 2 góc đồng vị), mà \(\widehat {{B_2}} + \widehat {{B_3}} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {{A_1}} + \widehat {{B_3}} = 180^\circ \) nên khẳng định A đúng
\(\widehat {{A_2}} = \widehat {{B_1}}\) ( 2 góc so le trong) nên khẳng định B đúng
\(\widehat {{A_4}} = \widehat {{B_1}}\) (2 góc đồng vị), mà \(\widehat {{B_1}} + \widehat {{B_4}} = 180^\circ \)( 2 góc kề bù) nên \(\widehat {{A_4}} + \widehat {{B_4}} = 180^\circ \) nên khẳng định C sai
\(\widehat {{A_3}} = \widehat {{B_4}}\)( 2 góc đồng vị) nên khẳng định D đúng