Hai đường thẳng song song và dấu hiệu nhận biết
Sách kết nối tri thức với cuộc sống
Chọn câu đúng nhất:
+ Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc so le trong bằng nhau thì hai đường thẳng song song.
+ Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc đồng vị bằng nhau thì hai đường thẳng song song.
+ Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc so le ngoài bằng nhau thì hai đường thẳng song song.
Vậy khẳng định A,B,C đều đúng.
Chọn D
Cho hình vẽ sau:
Chọn phát biểu đúng.
\(\widehat {{H_1}}\) và \(\widehat {{K_1}}\) là hai góc so le trong (sai, vì đó là 2 góc đồng vị, loại đáp án A)
\(\widehat {{H_4}}\) và \(\widehat {{K_4}}\) là hai góc đồng vị (đúng, chọn B)
\(\widehat {{H_3}}\) và \(\widehat {{K_4}}\) là hai góc so le ngoài (sai, vì đó là 2 góc trong cùng phía, loại đáp án C)
\(\widehat {{H_4}}\) và \(\widehat {{K_2}}\) là hai góc so le trong (sai, vì đó là 2 góc so le ngoài, loại đáp án D)
Chọn câu trả lời đúng trong các câu sau: Trong mặt phẳng,
Hai đường thẳng song song (trong mặt phẳng) là hai đường thẳng không có điểm chung.
Điền vào chỗ trống:
“Nếu hai đường thẳng a và b cắt đường thẳng c tạo thành một cặp góc đồng vị … thì các cặp góc so le trong bằng nhau”
Nếu hai đường thẳng a và b cắt đường thẳng c tạo thành một cặp góc đồng vị bằng nhau thì các cặp góc so le trong bằng nhau.
Chọn một cặp góc đồng vị trong hình vẽ sau:
\(\widehat {{M_1}}\) và \(\widehat {{N_4}}\) là hai góc đồng vị (sai, vì đó là là hai góc so le ngoài) loại đáp án A.
\(\widehat {{M_3}}\) và \(\widehat {{N_2}}\) là hai góc đồng vị (sai, vì đó là là hai góc so le trong) loại đáp án B.
\(\widehat {{M_4}}\) và \(\widehat {{N_2}}\) là hai góc đồng vị (sai, vì đó là là hai góc trong cùng phía) loại đáp án C.
\(\widehat {{M_1}}\) và \(\widehat {{N_2}}\) là hai góc đồng vị (đúng) chọn đáp án D.
Chọn câu đúng nhất.
+ Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc so le trong bằng nhau thì hai đường thẳng song song.
+ Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc đồng vị bằng nhau thì hai đường thẳng song song.
+ Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc so le ngoài bằng nhau thì hai đường thẳng song song.
nên cả A, B, C đều đúng.
Cho hình vẽ dưới đây :
Khẳng định sai là:
Vì đường thẳng d cắt 2 đường thẳng a và b tạo thành cặp góc A1 và B1 bằng nhau ( cùng bằng 110\(^\circ \)) nên:
+) \(\widehat {{A_2}} = \widehat {{B_2}}\)( 2 góc đồng vị)
Mà \(\widehat {{B_2}} = \widehat {{B_4}}\) ( 2 góc đối đỉnh)
\( \Rightarrow \widehat {{A_2}} = \widehat {{B_4}}\) nên A đúng
+) \(\widehat {{A_3}} = \widehat {{B_3}}\) ( 2 góc đồng vị)
Mà \(\widehat {{B_2}} + \widehat {{B_3}} = 180^\circ \) ( 2 góc kề bù) và \(\widehat {{A_1}} = \widehat {{A_3}}\); \(\widehat {{B_1}} = \widehat {{B_3}}\) ( 2 góc đối đỉnh) nên \(\)\(\widehat {{B_2}} + 110^\circ = 180^\circ \Rightarrow \widehat {{B_2}} = 70^\circ \)
\( \Rightarrow \widehat {{A_3}} \ne \widehat {{B_2}}\) nên B sai
+) \(\widehat {{A_1}} = \widehat {{B_1}}\)(=110\(^\circ \))
Mà \(\widehat {{A_1}} + \widehat {{A_4}} = 180^\circ \) ( 2 góc kề bù)
\( \Rightarrow \widehat {{A_4}} + \widehat {{B_1}} = 180^\circ \) nên C đúng
Ta có: \(\widehat {{B_2}} = \widehat {{B_4}}\) ( 2 góc đối đỉnh) nên D đúng
Chọn một cặp góc so le trong trong hình vẽ sau:
\(\widehat {{C_3}}\) và \(\widehat {{B_1}}\) là hai góc so le trong (đúng) chọn A
\(\widehat {{C_1}}\) và \(\widehat {{B_1}}\) là hai góc so le trong (sai, vì đây là 2 góc đồng vị), loại B
\(\widehat {{C_4}}\) và \(\widehat {{B_4}}\) là hai góc so le trong (sai, vì đây là 2 góc đồng vị), loại C
\(\widehat {{C_2}}\) và \(\widehat {{B_1}}\) là hai góc so le trong (sai, vì đây là 2 góc trong cùng phía), loại D.
Cho hình vẽ dưới đây :
Chọn câu sai.
Vì \(\widehat {{A_1}};\widehat {{A_2}}\) là hai góc kề bù nên \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) \( \Rightarrow 120^\circ + \widehat {{A_2}} = 180^\circ \Rightarrow \widehat {{A_2}} = 60^\circ \)
Tương tự vì \(\widehat {{B_1}};\widehat {{B_2}}\) là hai góc kề bù nên \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \) \( \Rightarrow 60^\circ + \widehat {{B_2}} = 180^\circ \Rightarrow \widehat {{B_2}} = 120^\circ \)
Nhận thấy \(\widehat {{A_2}} = \widehat {{B_2}} = 120^\circ \) mà hai góc ở vị trí đồng vị nên \(a//b.\)
Vậy khẳng định A sai
Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì:
Nếu đường thẳng $c$ cắt hai đường thẳng $a,b$ và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì: hai góc đồng vị bằng nhau
Cho hình vẽ sau:
Em hãy chọn câu đúng nhất trong các câu sau:
- \(\widehat {AEF}\) và \(\widehat {A{\rm{D}}C}\) là hai góc đồng vị (đúng, chọn A)
- \(\widehat {AFE}\) và \(\widehat {BAC}\) là hai góc trong cùng phía (sai, vì đó là hai góc so le trong) nên B sai
- \(\widehat {DCA}\) và \(\widehat {AFE}\) là hai góc so le trong (sai, vì đó là hai góc đồng vị) nên C sai
- \(\widehat {BAC}\) và \(\widehat {DCA}\) là hai góc đồng vị (sai, vì đó là hai góc so le trong) nên D sai
Cho hình vẽ sau:
Có bao nhiêu cặp góc đồng vị?
Các cặp góc đồng vị là: \(\widehat {{A_1}}\) và \(\widehat {{C_1}}\), \(\widehat {{A_4}}\) và \(\widehat {{C_4}}\), \(\widehat {{A_2}}\) và \(\widehat {{C_2}}\), \(\widehat {{A_3}}\) và \(\widehat {{C_3}}\), \(\widehat {{B_1}}\) và \(\widehat {{D_1}}\), \(\widehat {{B_2}}\) và \(\widehat {{D_2}}\), \(\widehat {{B_3}}\) và \(\widehat {{D_3}}\), \(\widehat {{B_4}}\) và \(\widehat {{D_4}}\).
Tương tự ta có thêm $8$ cặp góc đồng vị \(\widehat {{A_1}}\) và \(\widehat {{B_1}}\), \(\widehat {{A_4}}\) và \(\widehat {{B_4}}\), \(\widehat {{A_2}}\) và \(\widehat {{B_2}}\), \(\widehat {{A_3}}\) và \(\widehat {{B_3}}\), \(\widehat {{C_1}}\) và \(\widehat {{D_1}}\), \(\widehat {{C_2}}\) và \(\widehat {{D_2}}\), \(\widehat {{C_3}}\) và \(\widehat {{D_3}}\), \(\widehat {{C_4}}\) và \(\widehat {{D_4}}\).
Chọn một cặp góc đồng vị trong hình vẽ sau:
- \(\widehat {{M_1}}\) và \(\widehat {{N_4}}\) là hai góc đồng vị (sai, vì đó là là hai góc so le ngoài) loại đáp án A.
- \(\widehat {{M_3}}\) và \(\widehat {{N_2}}\) là hai góc đồng vị (sai, vì đó là là hai góc so le trong) loại đáp án B.
- \(\widehat {{M_4}}\) và \(\widehat {{N_2}}\) là hai góc đồng vị (sai, vì đó là là hai góc trong cùng phía) loại đáp án C.
- \(\widehat {{M_1}}\) và \(\widehat {{N_2}}\) là hai góc đồng vị (đúng) chọn đáp án D.
Biết một cặp góc so le trong \(\widehat {{A_3}} = \widehat {{B_2}} = {35^0}\). Tính số đo của cặp góc so le trong còn lại.
Ta có: \(\widehat {{A_3}} + \widehat {{A_4}} = {180^0}\) (kề bù)
\( \Rightarrow \widehat {{A_4}} = {180^0} - \widehat {{A_3}} = {180^0} - {35^0} = {145^0}\)
Ta có: \(\widehat {{A_3}}\) và \(\widehat {{B_2}}\); \(\widehat {{A_4}}\) và \(\widehat {{B_1}}\) là 2 cặp góc so le trong
Mặt khác, đường thẳng d cắt 2 đường thẳng x và y tạo thành 1
cặp góc so le trong \(\widehat {{A_3}} = \widehat {{B_2}} = {35^0}\)nên \( \Rightarrow \widehat {{A_4}} = \widehat {{B_1}} = {145^0}.\)
Cho hình vẽ dưới đây :
Chọn câu sai.
Vì \(\widehat {{A_1}};\widehat {{A_2}}\) là hai góc kề bù nên \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) \( \Rightarrow 120^\circ + \widehat {{A_2}} = 180^\circ \Rightarrow \widehat {{A_2}} = 60^\circ \)
Tương tự vì \(\widehat {{B_1}};\widehat {{B_2}}\) là hai góc kề bù nên \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \) \( \Rightarrow 60^\circ + \widehat {{B_2}} = 180^\circ \Rightarrow \widehat {{B_2}} = 120^\circ \)
Nhận thấy \(\widehat {{A_2}} = \widehat {{B_2}} = 120^\circ \) mà hai góc ở vị trí đồng vị nên \(a//b.\)
Vậy A sai.
Cho hình vẽ:
Biết \(\widehat {CF{\rm{E}}} = {55^0},\,\widehat {{E_1}} = {125^0}\) . Khi đó:
Ta có:\(\widehat{AEF} = \widehat {{E_1}}\) ( 2 góc đối đỉnh) nên \(\widehat{AEF} = 125^0\)
Vì \(\widehat {{E_1}}\) và \(\widehat {BEF}\) là hai góc kề bù
\( \Rightarrow \widehat {{E_1}} + \widehat {BEF} = {180^0} \Rightarrow \widehat {BEF} = {180^0} - \widehat {{E_1}} = {180^0} - {125^0} = {55^0} \Rightarrow \widehat {BEF} = \widehat {CFE} = {55^0}\)
Mà \(\widehat {BEF}\) và \(\widehat {CFE}\) ở vị trí so le trong nên suy ra \(AB//C{\rm{D}}\) (dấu hiệu nhận biết hai đường thẳng song song)
Cho hình vẽ sau:
Biết \(\widehat {{M_3}} = \widehat {{N_2}} = {140^0}.\) Tính \(\widehat {{M_4}} + \widehat {{N_2}},\,\widehat {{M_3}} + \widehat {{N_1}}.\)
Ta có: \(\widehat {{M_3}} + \widehat {{M_4}} = {180^0}\) (kề bù)
\(\begin{array}{l} \Rightarrow \widehat {{M_4}} = {180^0} - \widehat {{M_3}} = {180^0} - {140^0} = {40^0}\\ \Rightarrow \widehat {{M_4}} + \,\widehat {{N_2}} = {40^0} + {140^0} = {180^0}\end{array}\)
Ta có: \(\widehat {{N_2}} + \widehat {{N_1}} = {180^0}\) (kề bù)
\(\begin{array}{l} \Rightarrow \widehat {{N_1}} = {180^0} - \widehat {{N_2}} = {180^0} - {140^0} = {40^0}\\ \Rightarrow \widehat {{M_3}} + \widehat {{N_1}} = {140^0} + {40^0} = {180^0}\end{array}\)
Vẽ \(\Delta ABC\). Qua A vẽ đường thẳng d1 vuông góc với AB; đường thẳng d2 đi qua C và vuông góc với d1. Phát biểu nào sau đây là đúng?
Vì AB và d2 cùng vuông góc với d1 nên AB // d2
Cho hình vẽ sau:
Em hãy chọn câu đúng nhất trong các câu sau:
- \(\widehat {AEF}\) và \(\widehat {A{\rm{D}}C}\) là hai góc đồng vị (đúng, chọn A)
- $\widehat {AFE}$ và \(\widehat {BAC}\) là hai góc trong cùng phía (sai, vì đó là hai góc so le trong) loại B
- \(\widehat {DCA}\) và $\widehat {AFE}$ là hai góc so le trong (sai, vì đó là hai góc đồng vị) loại C
- \(\widehat {BAC}\) và \(\widehat {DCA}\) là hai góc đồng vị (sai, vì đó là hai góc so le trong) loại D
Cho hình vẽ:
Biết \(\widehat {CF{\rm{E}}} = {55^0},\,\widehat {{E_1}} = {125^0}\) . Khi đó:
Vì \(\widehat {{E_1}}\) và \(\widehat {BEF}\) là hai góc kề bù (gt)
\( \Rightarrow \widehat {{E_1}} + \widehat {BEF} = {180^0} \)\(\Rightarrow \widehat {BEF} = {180^0} - \widehat {{E_1}} \)\(= {180^0} - {125^0} = {55^0} \)\(\Rightarrow \widehat {BEF} = \widehat {CFE} = {55^0}\)
Mà \(\widehat {BEF}\) và \(\widehat {CFE}\) là hai góc so le trong nên suy ra \(AB//C{\rm{D}}\) (dấu hiệu nhận biết hai đường thẳng song song)
Lại có \(\widehat {{E_1}}=\widehat {{AEF}}\) (hai góc đối đỉnh) nên \(\widehat {{AEF}}=125^0\)
Vậy cả A, B đều đúng.