Góc ở vị trí đặc biệt. Tia phân giác của một góc

Sách kết nối tri thức với cuộc sống

Đổi lựa chọn

Câu 1 Trắc nghiệm

Cho $Ot$ là tia phân giác của \(\widehat {xOy}\). Biết \(\widehat {xOy} = {100^0}\), số đo của \(\widehat {xOt}\) là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì tia \(Ot\)  là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{100^\circ }}{2} = 50^\circ \) 

Câu 2 Trắc nghiệm

Hai đường thẳng zz’ và tt’ cắt nhau tại \(A\). Góc đối đỉnh với \(\widehat {zAt'}\) là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vì hai đường thẳng \(zz'\)  và \(tt'\)  cắt nhau tại \(A\)  nên \(Az'\)  là tia đối của tia \(Az,At'\) là tia đối của tia \(At.\) Vậy góc đối đỉnh với \(\widehat {zAt'}\) là \(\widehat {z'At}\).

Câu 3 Trắc nghiệm

Cho \(\widehat {xOy}\) là góc vuông có tia On là phân giác, số đo của \(\widehat {xOn}\) là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì \(On\) là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOn} = \widehat {nOy} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{90^\circ }}{2} = 45^\circ \)

Câu 4 Trắc nghiệm

Cho hai đường thẳng \(xx'\) và \(yy'\) cắt nhau  tại \(O\) sao cho \(\widehat {xOy} = 135^\circ \) . Chọn câu đúng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì hai đường thẳng \(xx'\)  và \(yy'\)  cắt nhau tại \(O\)  nên \(Ox'\)  là tia đối của tia \(Ox;Oy'\) là tia đối của tia \(Oy.\)

Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 135^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc kề bù nên

\(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)

\( \Rightarrow 45^\circ  + \widehat {x'Oy} = 180^\circ  \Rightarrow \widehat {x'Oy} = 180^\circ  - 135^\circ  = 45^\circ \)\( \Rightarrow 45^\circ  + \widehat {x'Oy} = 180^\circ  \Rightarrow \widehat {x'Oy} = 180^\circ  - 135^\circ  = 45^\circ \) 

Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 135^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 45^\circ .\)

 

Câu 5 Trắc nghiệm

Cho tia \(On\)  là tia phân giác của \(\widehat {mOt}\). Biết \(\widehat {mOn} = {70^0}\), số đo của \(\widehat {mOt}\) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Vì tia \(On\)  là tia phân giác của \(\widehat {mOt}\) nên \(\widehat {mOn} = \widehat {nOt} = \dfrac{{\widehat {mOt}}}{2}\)

\( \Rightarrow \widehat {mOt} = 2.\widehat {mOn} = 2.70^\circ  = 140^\circ \).

Câu 6 Trắc nghiệm

Cho góc \(xBy\) đối đỉnh với góc \(x'By'\) và \(\widehat {xBy} = 60^\circ \) . Tính số đo góc \(x'By'.\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vẽ \(\widehat {x'By'}\) là góc đối đỉnh với \(\widehat {xBy}\). Khi đó:

\(\widehat {x'By'} = \widehat {xBy} = {60^o}\) (tính chất hai góc đối đỉnh)

Câu 7 Trắc nghiệm

Cho 2 đường thẳng ab và cd cắt nhau tại M ( tia Ma đối tia Mc). Biết \(\widehat {aMc} = 5.\widehat {bMc}\). Tính số đo \(\widehat {aMc}\) ?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có : \(\widehat {aMc} + \widehat {bMc} = 180^\circ \) ( 2 góc kề bù)

Mà \(\widehat {aMc} = 5.\widehat {bMc}\)

\(\begin{array}{l} \Rightarrow 5.\widehat {bMc} + \widehat {bMc} = 180^\circ \\ \Rightarrow 6.\widehat {bMc} = 180^\circ \\ \Rightarrow \widehat {bMc} = 180^\circ :6 = 30^\circ \\ \Rightarrow \widehat {aMc} = 5.30^\circ  = 150^\circ \end{array}\)

\(\begin{array}{l} \Rightarrow 5.\widehat {bMc} + \widehat {bMc} = 180^\circ \\ \Rightarrow 6.\widehat {bMc} = 180^\circ \\ \Rightarrow \widehat {bMc} = 180^\circ :6 = 30^\circ \\ \Rightarrow \widehat {aMc} = 5.30^\circ  = 150^\circ \end{array}\)

Câu 8 Trắc nghiệm

Cho \(\widehat {AOB} = 90^\circ \) và tia \(OB\) là tia phân giác của góc \(AOC.\) Khi đó góc \(AOC\) là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì tia \(OB\) là tia phân giác của góc \(AOC\) nên \(\widehat {AOB} = \widehat {BOC} = \dfrac{{\widehat {AOC}}}{2}\)

Do đó \(\widehat {AOC} = 2.\widehat {AOB} = 2.90^\circ  = 180^\circ \)

Nên góc \(AOC\) là góc bẹt.

Câu 9 Trắc nghiệm

Cho \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\); \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì góc \(ABC'\)  kề bù với góc \(ABC\)  nên \(BC'\)  là tia đối của tia \(BC.\)

Vì góc \(C'BA'\)  kề bù với góc \(ABC'\)  nên \(BA'\)  là tia đối của tia \(BA.\)

Do đó, góc \(C'BA'\)  và góc \(ABC\)  đối đỉnh.

\( \Rightarrow \widehat {C'BA'} = \widehat {ABC} = {56^o}\) 

Câu 10 Trắc nghiệm

Cho \(\widehat {AOC} = {60^0}\). Vẽ tia \(OB\)  sao cho \(OA\)  là tia phân giác của \(\widehat {BOC}\). Tính số đo của \(\widehat {AOB}\) và \(\widehat {BOC}\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì tia \(OA\)  là tia phân giác của \(\widehat {BOC}\) nên ta có

\(\widehat {AOB} = \widehat {AOC} = \dfrac{{\widehat {BOC}}}{2}\) nên \(\widehat {AOB} = 60^\circ ;\,\widehat {BOC} = 2.\widehat {AOC} = 2.60^\circ  = 120^\circ \)

Vậy \(\widehat {AOB} = 60^\circ ;\,\widehat {BOC} = 120^\circ \).

Câu 11 Trắc nghiệm

Cho cặp góc đối đỉnh \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) (\(Oz\) và $Oz'$ là hai tia đối nhau). Biết \(\widehat {tOz'} = 4.\widehat {tOz}\). Tính các góc \(\widehat {tOz}\) và \(\widehat {t'Oz'}.\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có \(\widehat {zOt} + \widehat {tOz'} = 180^\circ \) (hai góc kề bù) mà \(\widehat {tOz'} = 4.\widehat {tOz}\) \( \Rightarrow \widehat {zOt} + 4.\widehat {zOt} = 180^\circ \) \( \Rightarrow 5.\widehat {zOt} = 180^\circ  \Rightarrow \widehat {zOt} = 36^\circ \)

Vì  \(\widehat {tOz}\) và \(\widehat {t'Oz'}\)  là hai góc đối đỉnh nên \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ .\)

Câu 12 Trắc nghiệm

Vẽ góc \(xOy\) có số đo bằng  125o. Vẽ góc \(x'Oy'\) đối đỉnh với góc \(xOy.\) Viết tên các góc có số đo bằng 55o.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì hai đường thẳng \(xx'\)  và \(yy'\)  cắt nhau tại \(O\)  nên \(Ox'\)  là tia đối của tia \(Ox;Oy'\) là tia đối của tia \(Oy.\)

Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 125^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên

\(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)

\( \Rightarrow 125^\circ  + \widehat {x'Oy} = 180^\circ  \Rightarrow \widehat {x'Oy} = 180^\circ  - 125^\circ  = 55^\circ \)

Hai góc có số đo bằng  55o là : \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

Câu 13 Trắc nghiệm

Cho \(\widehat {AOB} = {110^0}\) và \(\widehat {AOC} = {55^0}\) sao cho \(\widehat {AOB}\) và \(\widehat {AOC}\) không kề nhau. Chọn câu sai.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì \(\widehat {AOB}\) và \(\widehat {AOC}\) không kề nhau nên hai tia \(OC;OB\) thuộc cùng nửa mặt phẳng bờ là đường thẳng chứa tia \(OA\). Lại có \(\widehat {AOC} < \widehat {AOB}\,\left( {55^\circ  < 110^\circ } \right)\) nên tia \(OC\) nằm giữa hai tia \(OA\) và \(OB.\) (1)

Từ đó \(\widehat {AOC} + \widehat {COB} = \widehat {AOB}\,\) hay \(\widehat {COB} = \widehat {AOB} - \widehat {AOC} = 110^\circ  - 55^\circ  = 55^\circ \)

Suy ra \(\widehat {AOC} = \widehat {BOC} = 55^\circ \) (2)

Từ (1) và (2) suy ra tia \(OC\) là tia phân giác góc \(AOB.\)

Vậy A, B, D đúng và C sai.

Câu 14 Trắc nghiệm

Cho tia Ok là tia phân giác của  \(\widehat {mOn}\)= 70o . Tính \(\widehat {nOk}\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì Ok là tia phân giác của  \(\widehat {mOn}\) nên \(\widehat {mOk} = \widehat {nOk} = \frac{1}{2}.\widehat {mOn} = \frac{1}{2}.70^\circ  = 35^\circ \)

Câu 15 Trắc nghiệm

Cho \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề bù. Biết \(\widehat {xOy} = 120^\circ \) và tia \(Ot\) là tia phân giác của \(\widehat {yOz}.\) Tính số đo góc \(xOt.\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vì \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề bù nên \(\widehat {xOy} + \widehat {yOz} = 180^\circ \) mà \(\widehat {xOy} = 120^\circ \) nên \(\widehat {yOz} = 180^\circ  - 120^\circ  = 60^\circ \).

Lại có tia \(Ot\) là tia phân giác của \(\widehat {yOz}\) nên \(\widehat {zOt} = \dfrac{1}{2}\widehat {yOz} = \dfrac{1}{2}.60^\circ  = 30^\circ \)

Lại có \(\widehat {zOt};\,\widehat {tOx}\) là hai góc kề bù nên \(\widehat {zOt} + \widehat {tOx} = 180^\circ  \Rightarrow \widehat {tOx} = 180^\circ  - \widehat {zOt}\)\( = 180^\circ  - 30^\circ  = 150^\circ .\)

Vậy \(\widehat {tOx} = 150^\circ .\)

Câu 16 Trắc nghiệm

Hai đường thẳng \(MN\) và \(PQ\)  cắt nhau tại \(O\), tạo thành \(\widehat {MOP} = 50^\circ \) . Cho tia OK là tia phân giác của \(\widehat {PON}\). Chọn khẳng định sai.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có : \(\widehat {QON} = \widehat {MOP} = 50^\circ \) ( 2 góc đối đỉnh)

\(\widehat {MOQ} + \widehat {QON} = {180^o}\) ( 2 góc kề bù)

\(\widehat {MOP} + \widehat {PON} = 180^\circ \) ( 2 góc kề bù)

 \(\begin{array}{l} \Rightarrow 50^\circ  + \widehat {PON} = 180^\circ \\ \Rightarrow \widehat {PON} = 180^\circ  - 50^\circ  = 130^\circ \end{array}\)

Vì OK là tia phân giác của \(\widehat {PON}\)

\( \Rightarrow \widehat {POK} = \widehat {NOK} = \frac{1}{2}.\widehat {PON} = \frac{1}{2}.130^\circ  = 65^\circ \)

Vậy khẳng định A, C, D đúng, B sai

Câu 17 Trắc nghiệm

Cho góc \(AOB\) và tia phân giác \(OC\) của góc đó. Vẽ tia phân giác \(OM\) của góc \(BOC.\) Biết \(\widehat {BOM} = 35^\circ .\) Tính số đo góc \(AOB.\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì tia \(OM\) là tia phân của góc \(BOC\)

nên \(\widehat {BOC} = 2.\widehat {BOM} = 2.35^\circ  = 70^\circ \)

Lại có tia \(OC\) là tia phân giác của \(\widehat {AOB}\) nên \(\widehat {AOB} = 2.\widehat {BOC} = 2.70^\circ  = 140^\circ \). Vậy \(\widehat {AOB} = 140^\circ \).

Câu 18 Trắc nghiệm

Hai đường thẳng \(xy\)  và \(x'y'\)  cắt nhau tại \(O.\)  Biết \(\widehat {xOx'} = {70^o}\). \(Ot\)  là tia phân giác của góc xOx’. \(Ot'\)  là tia đối của tia \(Ot.\) Tính số đo góc \(yOt'.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Vì \(Ot\)  là tia phân giác của góc \(xOx'\) nên \(\widehat {xOt} = \widehat {tOx'} = \frac{1}{2}\widehat {xOx'} = \frac{1}{2}{.70^o} = {35^o}\)

Vì \(Oy\) là tia đối của \(Ox,Ot'\) là tia đối của \(Ot\)

\( \Rightarrow \widehat {yOt'} = \widehat {xOt} = {35^o}\) (tính chất hai góc đối đỉnh).

Câu 19 Trắc nghiệm

Cho góc bẹt \(xOy\). Trên cùng một nửa mặt phẳng bờ \(xy\) vẽ các tia \(Om;On\) sao cho \(\widehat {xOm} = a^\circ \,\left( {a < 180} \right)\) và \(\widehat {yOn} = 70^\circ .\) Với giá trị nào của \(a\) thì tia \(On\) là tia phân giác của \(\widehat {yOm}\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Giả sử tia \(On\) là tia phân giác của góc \(yOm\) thì \(\widehat {mOy} = 2.\widehat {yOn} = 2.70^\circ  = 140^\circ \).

Mà hai góc \(\widehat {xOm};\widehat {yOm}\) là hai góc kề bù nên \(\widehat {xOm} + \widehat {yOm} = 180^\circ \)\( \Rightarrow \widehat {xOm} = 180^\circ  - \widehat {yOm}\) \( = 180^\circ  - 140^\circ  = 40^\circ \).

Vậy \(a = 40 ^\circ\).

Câu 20 Trắc nghiệm

Cho \(\widehat {xOy},\widehat {yOz}\) là 2 góc kề bù. Góc xOy có số đo là 60o .  Kẻ Om và On lần lượt là tia phân giác của 2 góc đó. Tính số đo góc mOn

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: \(\widehat {xOy} + \widehat {yOz} = 180^\circ \) ( 2 góc kề bù)

\(\widehat {xOm} = \widehat {mOy} = \frac{1}{2}.\widehat {xOy} = \frac{1}{2}.60^\circ  = 30^\circ \)

Vì Om là tia phân giác của góc xOy nên \(\widehat {xOm} = \widehat {mOy} = \frac{1}{2}.\widehat {xOy} = \frac{1}{2}.60^\circ  = 30^\circ \)

Vì On là tia phân giác của góc yOz nên \(\widehat {yOn} = \widehat {nOz} = \frac{1}{2}.\widehat {yOz} = \frac{1}{2}.120^\circ  = 60^\circ \)

Vì Oy nằm giữa 2 tia Om và On nên \(\widehat {mOn} = \widehat {mOy} + \widehat {yOn} = 30^\circ  + 60^\circ  = 90^\circ \)