Câu hỏi:
1 năm trước

Cho hai đường thẳng \(xx'\) và \(yy'\) cắt nhau  tại \(O\) sao cho \(\widehat {xOy} = 135^\circ \) . Chọn câu đúng:

Trả lời bởi giáo viên

Đáp án đúng: d

Vì hai đường thẳng \(xx'\)  và \(yy'\)  cắt nhau tại \(O\)  nên \(Ox'\)  là tia đối của tia \(Ox;Oy'\) là tia đối của tia \(Oy.\)

Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 135^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc kề bù nên

\(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)

\( \Rightarrow 45^\circ  + \widehat {x'Oy} = 180^\circ  \Rightarrow \widehat {x'Oy} = 180^\circ  - 135^\circ  = 45^\circ \)\( \Rightarrow 45^\circ  + \widehat {x'Oy} = 180^\circ  \Rightarrow \widehat {x'Oy} = 180^\circ  - 135^\circ  = 45^\circ \) 

Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 135^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 45^\circ .\)

 

Hướng dẫn giải:

+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

Câu hỏi khác