Câu hỏi:
1 năm trước

Hai đường thẳng \(xy\)  và \(x'y'\)  cắt nhau tại \(O.\)  Biết \(\widehat {xOx'} = {70^o}\). \(Ot\)  là tia phân giác của góc xOx’. \(Ot'\)  là tia đối của tia \(Ot.\) Tính số đo góc \(yOt'.\)

Trả lời bởi giáo viên

Đáp án đúng: a

Vì \(Ot\)  là tia phân giác của góc \(xOx'\) nên \(\widehat {xOt} = \widehat {tOx'} = \frac{1}{2}\widehat {xOx'} = \frac{1}{2}{.70^o} = {35^o}\)

Vì \(Oy\) là tia đối của \(Ox,Ot'\) là tia đối của \(Ot\)

\( \Rightarrow \widehat {yOt'} = \widehat {xOt} = {35^o}\) (tính chất hai góc đối đỉnh).

Hướng dẫn giải:

+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

+ Sử dụng tính chất tia phân giác của một góc

Câu hỏi khác