Câu hỏi:
1 năm trước

Cho hai đường thẳng $a$  và $b$  cùng vuông góc với đường thẳng $c,$ $c$ vuông góc với $a$  tại $M$  và vuông góc với $b$  tại $N.$ Một đường thẳng $m$ cắt $a,b$ tại $A,B.$ Biết \(\widehat {ABN} - \widehat {MAB} = 40^\circ \). Số đo góc $BAM$  là:

Trả lời bởi giáo viên

Đáp án đúng: b

Từ đề bài ta có \(a \bot c;b \bot c \Rightarrow a//b\) (quan hệ từ vuông góc đến song song)

Suy ra \(\widehat {ABN} + \widehat {MAB} = 180^\circ \) (hai góc trong cùng phía bù nhau)

mà \(\widehat {ABN} - \widehat {MAB} = 40^\circ \)

 nên \(\widehat {ABN} = \dfrac{{180^\circ  + 40^\circ }}{2} = 110^\circ \) và \(\widehat {MAB} = 180^\circ  - \widehat {ABN} \)\(= 180^\circ  - 110^\circ  = 70^\circ \)

Vậy \(\widehat {BAM} = 70^\circ .\)

Hướng dẫn giải:

+ Áp dụng tính chất: Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau.

+ Tính chất hai đường thẳng song song.

+ Ta sử dụng cách tìm hai số khi biết tổng và hiệu như sau

\(x + y = a;x - y = b \Rightarrow x = \dfrac{{a + b}}{2};y = \dfrac{{a - b}}{2}\)

Câu hỏi khác