Biết \(\dfrac{a}{b} = \dfrac{1}{2};\,\,\dfrac{b}{c} = \dfrac{4}{3};\,\,\dfrac{d}{c} = \dfrac{2}{3}\left( {a,b,c,d \ne 0} \right)\), tỉ số \(\dfrac{a}{d}\) rằng:
Ta có: \(\dfrac{a}{d} = \dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)
Do \(\dfrac{d}{c} = \dfrac{2}{3}\) nên \(\dfrac{c}{d} = \dfrac{3}{2}\)
Suy ra:
\(\dfrac{a}{d} = \dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d} = \dfrac{1}{2}.\dfrac{4}{3}.\dfrac{3}{2} = \dfrac{{1.2.2.3}}{{2.3.2}} = 1\)
Biết \(\dfrac{a}{b} = \dfrac{4}{5};\,\,\dfrac{c}{b} = \dfrac{1}{5};\,\,\dfrac{c}{d} = \dfrac{1}{2}\left( {a,b,c,d \ne 0} \right)\), tỉ số \(\dfrac{a}{d}\) rằng:
Ta có: \(\dfrac{a}{d} = \dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)
Do \(\dfrac{c}{b} = \dfrac{1}{5} \Rightarrow \dfrac{b}{c} = 5\)
Suy ra: \(\dfrac{a}{d} = \dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d} = \dfrac{4}{5}.5.\dfrac{1}{2} = \dfrac{{4.5.1}}{{5.2}} = 2\).
Ta có \(\dfrac{{2x - y}}{{x + y}} = \dfrac{2}{3}\)
nên \(3\left( {2x - y} \right) = 2\left( {x + y} \right)\)
\(6x - 3y = 2x + 2y\)
\(6x - 2x = 2y + 3y\)
\(4x = 5y\)
\(\dfrac{y}{x} = \dfrac{4}{5}\)
Vậy \(\dfrac{y}{x} = \dfrac{4}{5}\).
Biết rằng \(\dfrac{{x + 3y}}{{x - 2y}} = \dfrac{4}{3}\) với \(x - 2y \ne 0\). Khi đó tỉ số \(\dfrac{x}{y}\,\,(x \ne 0)\) bằng
\(\dfrac{{x + 3y}}{{x - 2y}} = \dfrac{4}{3}\)
\(3.(x + 3y) = 4.(x - 2y)\)
\(3x + 9y = 4x - 8y\)
\(9y + 8y = 4x - 3x\)
\(17y = x\)
\(\dfrac{y}{x} = \dfrac{{1}}{17}\)
Vậy \(\dfrac{y}{x} = \dfrac{{1}}{17}\).
Tìm \(x\) biết: \(\dfrac{2}{3}:\left( {4 - x} \right) = \dfrac{1}{5}:\dfrac{3}{{10}}\)
\(\begin{array}{l}\dfrac{2}{3}:\left( {4 - x} \right) = \dfrac{1}{5}:\dfrac{3}{{10}}\\\dfrac{2}{3}:\left( {4 - x} \right) = \dfrac{1}{5}.\dfrac{{10}}{3}\\\dfrac{2}{3}:\left( {4 - x} \right) = \dfrac{2}{3}\\4 - x = \dfrac{2}{3}:\dfrac{2}{3}\\4 - x = 1\\x = 4 - 1\\x = 3\end{array}\)
Vậy \(x = 3\).
Tìm \(x\) biết: \(\dfrac{{ - 2}}{3}:\left( {3 + 2x} \right) = \dfrac{1}{7}:\dfrac{3}{{14}}\)
\(\begin{array}{l}\dfrac{{ - 2}}{3}:\left( {3 + 2x} \right) = \dfrac{1}{7}:\dfrac{3}{{14}}\\\dfrac{{ - 2}}{3}:\left( {3 + 2x} \right) = \dfrac{1}{7}.\dfrac{{14}}{3}\\\dfrac{{ - 2}}{3}:\left( {3 + 2x} \right) = \dfrac{2}{3}\\3 + 2x = \dfrac{{ - 2}}{3}:\dfrac{2}{3}\\3 + 2x = - 1\\2x = -3 - 1\\2x = -4\\x = -2\end{array}\)
Vậy \(x =- 2\).
Cho bốn số \( 4;{\rm{ -7}};{\rm{ x}};{\rm{ y}}\) với \(y \ne 0\) và \( -7x = 4y\), một tỉ lệ thức đúng được thiết lập từ bốn số trên là:
\(\dfrac{x}{y} = \dfrac{{ - 7}}{4} \Rightarrow 4x = - 7y\) => A không thỏa mãn.
\(\dfrac{x}{{ - 7}} = \dfrac{y}{4} \Rightarrow 4x = - 7y\) => B không thỏa mãn.
\(\dfrac{x}{{ - 7}} = \dfrac{4}{y} \Rightarrow xy = - 7.4\) => C không thỏa mãn.
\(\dfrac{x}{4} = \dfrac{y}{{ - 7}} \Rightarrow - 7x = 4y\) => D thỏa mãn.
Cho bốn số $4;{\rm{ }}9;{\rm{ }}a;{\rm{ }}y$ với \(a, y \ne 0\) và $4a = 9y$, một tỉ lệ thức đúng được thiết lập từ bốn số trên là:
\(\dfrac{a}{b} = \dfrac{4}{9} \Rightarrow 9a = 4b\) => A không thỏa mãn
\(\dfrac{a}{4} = \dfrac{b}{9} \Rightarrow 9a = 4b\) => B không thỏa mãn
\(\dfrac{a}{b} = \dfrac{9}{4} \Rightarrow 4a = 9b\) => C thỏa mãn
\(\dfrac{4}{a} = \dfrac{b}{9} \Rightarrow ab = 4.9\) => D không thỏa mãn.
Các tỉ lệ thức có thể lập được từ đẳng thức: \(4.19 = 3.17\) là:
Ta có: \(4.19 = 3.17\) suy ra \(\dfrac{4}{{17}} = \dfrac{3}{{19}};\,\,\dfrac{{17}}{4} = \dfrac{{19}}{3};\,\,\dfrac{3}{4} = \dfrac{{19}}{{17}};\,\,\dfrac{4}{3} = \dfrac{{17}}{{19}}\)
Các tỉ lệ thức có thể lập được từ đẳng thức: \(4.9 = 7.3\) là:
Ta có: \(4.9 = 7.3\) suy ra \(\dfrac{4}{7} = \dfrac{3}{9};\,\,\dfrac{7}{4} = \dfrac{9}{3};\,\,\dfrac{3}{4} = \dfrac{9}{7};\,\,\dfrac{4}{3} = \dfrac{7}{9}\)
Trong các cặp số sau, có mấy cặp tạo thành tỉ lệ thức:
1) $\dfrac{7}{{12}}$ và $\dfrac{5}{6}:\dfrac{4}{3}$
2) $\dfrac{6}{7}:\dfrac{{14}}{5}$ và $\dfrac{7}{3}:\dfrac{2}{9}$
3) $\dfrac{{15}}{{21}}$ và $-\dfrac{{125}}{{175}}$
4) $\dfrac{{ - 1}}{3}$ và $\dfrac{{ - 19}}{{57}}$
Ta có, $\dfrac{5}{6}:\dfrac{4}{3} = \dfrac{5}{6}.\dfrac{3}{4} = \dfrac{5}{8} \ne \dfrac{7}{{12}}$ nên 1) không tạo thành tỉ lệ thức.
$\dfrac{6}{7}:\dfrac{{14}}{5} = \dfrac{6}{7}.\dfrac{5}{{14}} = \dfrac{{15}}{{49}}$ và $\dfrac{7}{3}:\dfrac{2}{9} = \dfrac{7}{3}.\dfrac{9}{2} = \dfrac{{21}}{2} \ne \dfrac{{15}}{{49}}$ nên 2) không tạo thành tỉ lệ thức.
$\dfrac{{15}}{{21}} = \dfrac{5}{7} \ne - \dfrac{{125}}{{175}}$ nên 3) không tạo thành tỉ lệ thức.
Ta có $\dfrac{{ - 1}}{3} = \dfrac{{ - 19}}{{57}}$ vì $\left( { - 1} \right).{\rm{ }}57 = 3.\left( { - 19} \right) = - 57$.
Do đó 4) lập thành tỉ lệ thức.
Vậy có 1 cặp số lập thành tỉ lệ thức.
Chỉ ra đáp án sai: Từ tỉ lệ thức $\dfrac{2}{9} = \dfrac{{18}}{{81}}$ ta có tỉ lệ thức sau :
Ở đáp án D: \(2.9 \ne 18.81\) nên \(\dfrac{2}{{18}} \ne \dfrac{{81}}{9}\) nên D sai
Chỉ ra đáp án sai: Từ tỉ lệ thức $\dfrac{7}{9} = \dfrac{{21}}{{27}}$ ta có tỉ lệ thức sau :
Ở đáp án A: \(7.21 \ne 9.27\) nên \(\dfrac{7}{9} \ne \dfrac{{27}}{{21}}\) nên A sai
Chọn câu đúng: Nếu \(\dfrac{m}{n} = \dfrac{p}{q}\) thì
Ta có: Nếu \(\dfrac{m}{n} = \dfrac{p}{q}\) thì \(m.q = n.p\).
Tìm 2 số hữu tỉ $x, y$ biết rằng \(\dfrac{x}{{{y^2}}} = 2\) và \(\dfrac{x}{y} = 16\)\(\left( {y \ne 0} \right).\)
Ta có \(\dfrac{x}{{{y^2}}} = 2\) nên \(\dfrac{x}{y}.\dfrac{1}{y} = 2\) mà \(\dfrac{x}{y} = 16\) , do đó
\(16.\dfrac{1}{y} = 2\)
\(\dfrac{1}{y} = \dfrac{1}{8}\)
\(y = 8\)
Thay \(y = 8\) vào \(\dfrac{x}{y} = 16\) ta được: \(\dfrac{x}{8} = 16\) suy ra \(x = 16.8 = 128\).
Tìm số hữu tỉ \(x, y\) biết rằng \(\dfrac{x}{{{y^2}}} = \dfrac{1}{4}\) và \(\dfrac{x}{y} = 32\) \(\left( {y \ne 0} \right).\)
Ta có \(\dfrac{x}{{{y^2}}} = \dfrac{1}{4}\) hay \(\dfrac{x}{y}.\dfrac{1}{y} = \dfrac{1}{4}\) mà \(\dfrac{x}{y} = 32\)
Khi đó \(32.\dfrac{1}{y} = \dfrac{1}{4}\)
\(\dfrac{1}{y} = \dfrac{1}{4}:32\)
\(\dfrac{1}{y} = \dfrac{1}{4}.\dfrac{1}{{32}}\)
\(\dfrac{1}{y} = \dfrac{1}{{128}}\)
\(y.1 = 128.1\)
\(y = 128\)
Thay \(y = 128\) vào \(\dfrac{x}{y} = 32\) ta được: \(\dfrac{x}{{128}} = 32\) suy ra \(x = 32.128 = 4096\).
Gọi $x_0$ là số thỏa mãn \(\dfrac{3}{{1 - 2x}} = \dfrac{{ - 5}}{{3x - 2}}\)\(\left( {x \ne \dfrac{1}{2};\,x \ne \dfrac{2}{3}} \right)\), chọn kết luận đúng:
\(\dfrac{3}{{1 - 2x}} = \dfrac{{ - 5}}{{3x - 2}}\)
\(3.(3x - 2) = - 5.(1 - 2x)\)
\(9x - 6 = - 5 + 10x\)
\( - 6 + 5 = 10x - 9x\)
\(x = - 1\)(thỏa mãn)
Vậy $x_0 = - 1<0$
Chọn câu sai. Nếu \(ad = bc\) và \(a,b,c,d \ne 0\) thì
Nếu \(ad = bc\) và \(a,b,c,d \ne 0\) thì ta có: \(\dfrac{a}{b} = \dfrac{c}{d},\,\dfrac{a}{c} = \dfrac{b}{d},\,\dfrac{d}{c} = \dfrac{b}{a}\) nên A, B, D đúng; C sai.
Gọi $x_0$ là số thỏa mãn \(\dfrac{6}{{x - 1}} = \dfrac{4}{{4 + 3x}}\) với \(x - 1 \ne 0;4 + 3x \ne 0\), chọn kết luận đúng:
\(\dfrac{6}{{x - 1}} = \dfrac{4}{{4 + 3x}}\)
\(6.(4 + 3x) = 4.(x - 1)\)
\(24 + 18x = 4x - 4\)
\(18x - 4x = - 4 - 24\)
\(14x = - 28\)
\(x = - 2\) (thỏa mãn)
Vậy \(x_0 = - 2<-1\).
Cho tỉ lệ thức \(\dfrac{x}{{15}} = \dfrac{{ - 3}}{5}\) thì:
Ta có: \(\dfrac{x}{{15}} = \dfrac{{ - 3}}{5} \Rightarrow x.5 = 15.\left( { - 3} \right) \Rightarrow x = \dfrac{{15.\left( { - 3} \right)}}{5} = - 9\)
Vậy \(x = - 9\).