Trong các cặp số sau, có mấy cặp tạo thành tỉ lệ thức:
1) $\dfrac{7}{{12}}$ và $\dfrac{5}{6}:\dfrac{4}{3}$
2) $\dfrac{6}{7}:\dfrac{{14}}{5}$ và $\dfrac{7}{3}:\dfrac{2}{9}$
3) $\dfrac{{15}}{{21}}$ và $-\dfrac{{125}}{{175}}$
4) $\dfrac{{ - 1}}{3}$ và $\dfrac{{ - 19}}{{57}}$
Trả lời bởi giáo viên
Ta có, $\dfrac{5}{6}:\dfrac{4}{3} = \dfrac{5}{6}.\dfrac{3}{4} = \dfrac{5}{8} \ne \dfrac{7}{{12}}$ nên 1) không tạo thành tỉ lệ thức.
$\dfrac{6}{7}:\dfrac{{14}}{5} = \dfrac{6}{7}.\dfrac{5}{{14}} = \dfrac{{15}}{{49}}$ và $\dfrac{7}{3}:\dfrac{2}{9} = \dfrac{7}{3}.\dfrac{9}{2} = \dfrac{{21}}{2} \ne \dfrac{{15}}{{49}}$ nên 2) không tạo thành tỉ lệ thức.
$\dfrac{{15}}{{21}} = \dfrac{5}{7} \ne - \dfrac{{125}}{{175}}$ nên 3) không tạo thành tỉ lệ thức.
Ta có $\dfrac{{ - 1}}{3} = \dfrac{{ - 19}}{{57}}$ vì $\left( { - 1} \right).{\rm{ }}57 = 3.\left( { - 19} \right) = - 57$.
Do đó 4) lập thành tỉ lệ thức.
Vậy có 1 cặp số lập thành tỉ lệ thức.
Hướng dẫn giải:
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)