Phát biểu nào sau đây là đúng?
Ta thấy số nguyên, phân số hay số vô tỉ đều là số thực
Chọn chữ số thích hợp điền vào chỗ trống $ - 5,07 < - 5,...4$
Áp dụng so sánh hai số nguyên âm ta thấy chỉ có $ - 5,07 < - 5,04$ . Do đó ô trống cần điền là số $0$
Sắp xếp các số sau theo thứ tự tăng dần: \( - \dfrac{1}{2};0,5; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4};\dfrac{4}{5}\)
Ta chia các số đã cho thành hai nhóm: \( - \dfrac{1}{2}; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}\) và \(0,5;\dfrac{4}{5}\).
Nhóm 1: vì \(\dfrac{3}{4} < \sqrt 2 + \dfrac{3}{4}\) nên \( - \dfrac{3}{4} > - \left( {\sqrt 2 + \dfrac{3}{4}} \right) = - \sqrt 2 - \dfrac{3}{4}\).
Lại có \(\dfrac{1}{2} = \dfrac{2}{4} < \dfrac{3}{4} \Rightarrow - \dfrac{1}{2} > - \dfrac{3}{4}\) nên \( - \sqrt 2 - \dfrac{3}{4} < - \dfrac{3}{4} < - \dfrac{1}{2}\).
Nhóm 2: \(0,5 = \dfrac{1}{2} = \dfrac{5}{{10}} < \dfrac{8}{{10}} = \dfrac{4}{5} \Rightarrow 0,5 < \dfrac{4}{5}\).
Vậy ta có dãy số tăng dần là \( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\).
Nếu ${x^2} = 7$ thì $x$ bằng:
Ta có \({x^2} = 7 \Leftrightarrow {x^2} = {\left( { \pm \sqrt 7 } \right)^2}\).
Suy ra \(x = \sqrt 7 \) hoặc \(x = - \sqrt 7 \)
Kết quả của phép tính \(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\) là:
\(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\)
\( = \left( {\dfrac{3}{5} - 18} \right):\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right)\)
\( = \left( {\dfrac{3}{5} - 18} \right):\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right) \)
\(= \left( {\dfrac{3}{5} - \dfrac{{90}}{5}} \right):\dfrac{5}{5} \)
\(= \dfrac{{ - 87}}{5}:1 = \dfrac{{ - 87}}{5}\)
Cho \(A = \) \(\left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right] .\sqrt {1\dfrac{9}{{16}}}\) và $B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right].$ So sánh \(A\) và \(B\).
Ta có
\(A = \left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right].\sqrt {1\dfrac{9}{{16}}} \)
\(A = \left[ { - 1,5 + 4.2,15 - 9.\dfrac{7}{6}} \right].\sqrt {\dfrac{{25}}{{16}}} \)
\(A = \left[ { - 1,5 + 8,6 - \dfrac{{21}}{2}} \right].\dfrac{5}{4}\)
\(A = \left[ {7,1 - 10,5} \right].1,25\)
\(A = - 3,4.1,25\)
\(A = - 4,25\)
Và
$B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right]$
$B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{6}{5}\left( {\dfrac{5}{2} - \dfrac{7}{4}} \right)} \right]:\left[ {\dfrac{4}{9} + \dfrac{1}{9}} \right]$
$B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{6}{5}.\dfrac{3}{4}} \right]:\dfrac{5}{9}$
$B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{9}{{10}}} \right]:\dfrac{5}{9}$
$B = \dfrac{{42}}{{25}} + \dfrac{{ - 1}}{{10}}:\dfrac{5}{9} = \dfrac{{42}}{{25}} + \dfrac{{ - 9}}{{50}}$
$B = \dfrac{{84}}{{50}} + \dfrac{{ - 9}}{{50}} = \dfrac{{75}}{{50}} = \dfrac{3}{2}$
Từ đó \(A < B\).
Giá trị nào sau đây là kết quả của phép tính \(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)
\(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)
$=(-45,7)+(5,7+5,75-0,75)$$=-45,7+5,7+5$$=-40+5$$=-35$
Tìm \(x\) biết \(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)
\(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)
\(\begin{array}{l}\dfrac{5}{3}x = \dfrac{5}{7} - \dfrac{2}{3}\\\dfrac{5}{3}x = \dfrac{1}{{21}}\\x = \dfrac{1}{{21}}:\dfrac{5}{3}\\x = \dfrac{1}{{35}}\end{array}\)
Vậy \(x = \dfrac{1}{{35}}.\)
Gọi \(x\) là giá trị thỏa mãn \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\). Chọn câu đúng.
Ta có
\(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\)
\(1,3.\left( {2\sqrt x + \dfrac{9}{{11}}} \right) = 1,3\)
\(2\sqrt x + \dfrac{9}{{11}} = 1,3:1,3\)
\(2\sqrt x + \dfrac{9}{{11}} = 1\)
\(2\sqrt x = 1 - \dfrac{9}{{11}}\)
\(2\sqrt x = \dfrac{2}{{11}}\)
\(\sqrt x = \dfrac{2}{{11}}:2\)
\(\sqrt x = \dfrac{1}{{11}}\)
\(x = \dfrac{1}{{121}}\)
Vậy \(x = \dfrac{1}{{121}}\) nên \(0 < x < 1\).
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\).
Ta có \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\)
\(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{1}{5} + \dfrac{3}{4}\)
\(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{{19}}{{20}}\)
Trường hợp 1: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{19}}{{20}}\)
$\dfrac{3}{5}\sqrt x = \dfrac{{19}}{{20}} + \dfrac{1}{{20}} = 1$
$\sqrt x = 1:\dfrac{3}{5} = \dfrac{5}{3}$
$x = \dfrac{{25}}{9}$
Trường hợp 2: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{ - 19}}{{20}}\)
$\dfrac{3}{5}\sqrt x = \dfrac{{ - 19}}{{20}} + \dfrac{1}{{20}}$
$\dfrac{3}{5} \sqrt x = - \dfrac{9}{{10}}$
$\sqrt x = \dfrac{{ - 9}}{{10}}:\dfrac{3}{5}$
\(\sqrt x = - \dfrac{3}{2} < 0\) (vô lý)
Vậy có một giá trị của \(x\) thỏa mãn là \(x = \dfrac{{25}}{9}\)
Giá trị nào dưới đây của \(x\) thỏa mãn \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7.\)
Ta có
\(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7\)
\(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 = 77,7 + 12,3\)
\(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 = 90\)
\(\left( {7 + 0,004x} \right):0,9 = 90.24,7\)
\(\left( {7 + 0,004x} \right):0,9 = 2223\)
\(7 + 0,004x = 2223.0,9\)
\(7 + 0,004x = 2000,7\)
\(0,004x = 1993,7\)
\(x = 498425\)
Vậy \(x = 498425\).
Tìm số tự nhiên $x$ để \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}}\) có giá trị là một số nguyên.
Ta có: \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}} \) \(= \dfrac{{\sqrt x + 2 - 5}}{{\sqrt x + 2}} \) \(= 1 - \dfrac{5}{{\sqrt x + 2}}\)
Để \(D \in Z\) thì \(\left( {\sqrt x + 2} \right)\) phải thuộc $Z$ và là ước của $5.$
Vì \(\left( {\sqrt x + 2} \right) > 0\) nên chỉ có hai trường hợp:
Trường hợp 1: \(\sqrt x + 2 = 1 \Leftrightarrow \sqrt x = - 1\) (vô lý)
Trường hợp 2: \(\sqrt x + 2 = 5 \Leftrightarrow \sqrt x = 3 \Leftrightarrow x = 9\)(thỏa mãn).
Vậy để \(D \in Z\) thì $x = 9$ (khi đó $D = 0$).