Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\).
Trả lời bởi giáo viên
Ta có \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\)
\(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{1}{5} + \dfrac{3}{4}\)
\(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{{19}}{{20}}\)
Trường hợp 1: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{19}}{{20}}\)
$\dfrac{3}{5}\sqrt x = \dfrac{{19}}{{20}} + \dfrac{1}{{20}} = 1$
$\sqrt x = 1:\dfrac{3}{5} = \dfrac{5}{3}$
$x = \dfrac{{25}}{9}$
Trường hợp 2: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{ - 19}}{{20}}\)
$\dfrac{3}{5}\sqrt x = \dfrac{{ - 19}}{{20}} + \dfrac{1}{{20}}$
$\dfrac{3}{5} \sqrt x = - \dfrac{9}{{10}}$
$\sqrt x = \dfrac{{ - 9}}{{10}}:\dfrac{3}{5}$
\(\sqrt x = - \dfrac{3}{2} < 0\) (vô lý)
Vậy có một giá trị của \(x\) thỏa mãn là \(x = \dfrac{{25}}{9}\)
Hướng dẫn giải:
Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.
Đối với bài toán tìm $x$ có chứa dấu giá trị tuyệt đối ta áp dụng quy tắc phá dấu giá trị tuyệt đối: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,x \ge 0\\ - x\,\,\,\,khi\,\,\,x < 0\end{array} \right.\) sau đó tìm $x$.
Giải thích thêm:
Một số em không để ý đến điều kiện \(\sqrt x \ge 0\) nên vẫn ra kết qua cho trường hợp 2 dẫn đến sai đáp án.