Dạng 1: Toán về quan hệ giữa các số
Bài 1: Tìm một số tự nhiên có hai chữ số sao cho tổng của hai chữ số của nó bằng 11, nếu đổi chỗ hai chữ số hàng chục và hàng đơn vị cho nhau thì số đó tăng thêm 27 đơn vị.
Bài 2: Tìm một số tự nhiên có ba chữ số sao cho tổng các chữ số bằng 17, chữ số hàng chục là 4, nếu đổi chỗ các chữ số hàng trăm và hàng đơn vị cho nhau thì số đó giảm đi 99 đơn vị.
Bài 3: Tìm một số tự nhiên có ba chữ số chia hết cho 11, biết rằng khi chia số đó cho 11 thì được thương bằng tổng các chữ số của số bị chia.
Bài 4: Tìm hai số biết rằng tổng của hai số đó bằng 17 đơn vị. Nếu số thứ nhất tăng thêm 3 đơn vị, số thứ hai tăng thêm 2 đơn vị thì tích của chúng bằng 105 đơn vị.
Bài 5: Một số của một phân số lớn hơn tử số của nó là 3 đơn vị. Nếu tăng cả tử và mẫu của nó thêm 1 đơn vị thì được một phân số mới bằng phân số đã cho. Tìm phân số đó?
Bài 6: Tổng các chữ số của 1 số có hai chữ số là 9. Nếu thêm vào số đó 63 đơn vị thì số thu được cũng viết bằng hai chữ số đó nhưng theo thứ tự ngược lại. Hãy tìm số đó?
Bài 7: Tìm hai số tự nhiên liên tiếp có tổng các bình phương của nó là 85.
Bài 8: Tìm hai số biết tổng bằng 19 và tổng các bình phương của chúng bằng 185.
Bài 9: Tìm tất cả các số tự nhiên có hai chữ số, biết rằng chữ số hàng đơn vị nhỏ hơn chữ số hàng chục là 2 và tích của hai chữ số đó của nó luôn lớn hơn tổng hai chữ số của nó là 34.
Bài 10: Cho một số có hai chữ số. Tìm số đó, biết rằng tổng hai chữ số của nó nhỏ hơn số đó 6 lần, nếu thêm 25 vào tích của hai chữ số đó sẽ được một số theo thứ tự ngược lạivới số đẵ cho.
Bài 11: Đem một số nhân với 3 rồi trừ đi 7 thì được 50. Hỏi số đó là bao nhiêu ?
Bài 12: Tổng hai số bằng 51. Tìm hai số đó biết rằng số thứ nhất thì bằng số thứ hai.
Bài 13: Tìm một số tự nhiên có hai chữ số, biết tổng các chữ số của nó là 7. Nếu đổi chỗ
hai chữ số hàng đơn vị và hàng chụccho nhau thì số đó giảm đi 45 đơn vị.
Bài 14: Tìm hai số hơn kém nhau 5 đơn vị và tích của chúng bằng 150.
Bài 15: Tìm số tự nhiên có 2 chữ số, biết rằng số đó bằng lập phương của số tạo bởi chữ
số hàng vạn và chữ số hàng nghìn của số đã cho theo thứ tự đó.
Bài 16: Tìm số có hai chữ số biết rằng phân số có tử số là số đó, mẫu số là tích của hai chữ số của nó có phân số tối giản là 16/9 và hiệu của số cần tìm với số có cùng các chữ số với nó nhưng viết theo thứ tự ngược lại bằng 27.
Bài 17: Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số lớn hơn số đã cho là 63. Tổng của số đã cho và số mới tạo thành bằng 99. Tìm số đã cho.
Dạng 2: Toán làm chung công việc
Bài 1: Hai vòi nước cùng chảy vào một bể sau 4 giờ 48 phút thì đầy bể. Nếu vòi I chảy trong 4 giờ, vòi II chảy trong 3 giờ thì cả hai vòi chảy được bể. Tính thời gian để mỗi vòi chảy riêng một mình đầy bể.
Bài 2: Để hoàn thành một công việc, hai tổ phải làm chung trong 6 giờ. Sau 2 giờ làm chung thì tổ II được điều đi làm việc khác, tổ I đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thì sau bao lâu sẽ xong công việc đó.
Bài 3: Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian.
Bài 4: Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ, người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc trong bao lâu?
Bài 5: Hai thợ cùng đào một con mương thì sau 2giờ 55 phút thì xong việc. Nếu họ làm riêng thì đội 1 hoàn thành công việc nhanh hơn đội 2 là 2 giờ. Hỏi nếu làm riêng thì mỗi đội phải làm trong bao nhiêu giờ thì xong công việc?
Bài 6: Hai người thợ cùng sơn cửa cho một ngôi nhà thì 2 ngày xong việc. Nếu người thứ nhất làm trong 4 ngày rồi nghỉ người thứ hai làm tiếp trong 1 ngày nữa thì xong việc. Hỏi mỗi người làm một mình thì bao lâu xong công việc?
Bài 7: Một đội máy kéo dự định mỗi ngày cày 40 ha. Khi thực hiện mỗi ngày cày được 52 ha, vì vậy đội không những cày xong trước thời hạn 2 ngày mà còn cày thêm được 4 ha nữa. Tính diện tích thửa ruộng mà đội phải cày theo kế hoạch.
Bài 8: Hai tổ công nhân làm chung trong 12 giờ sẽ hoàn thành một công việc đã định. Họ làm chung với nhau trong 4 giờ thì tổ thứ nhất được điều đi làm công việc khác, tổ thứ hai làm một mình phần công việc còn lại trong 10 giờ. Hỏi tổ thứ hai nếu làm một mình thì sau bao lâu sẽ hoàn thành công việc.
Bài 9: Một đội công nhân hoàn thành một công việc với mức 420 ngày công. Hãy tính số công nhân của đội, biết rằng nếu đội tăng thêm 5 người thì số ngày để hoàn thành công việc sẽ giảm đi 7 ngày.
Bài 10: Hai đội xây dựng cùng làm chung một công việc và dự đinh xong trong 12 ngày. Họ cùng làm chung với nhau được 8 ngày thì đội 1 được điều động đi làm công việc khác, đội 2 tiếp tục làm. Do cải tiến kỹ thuật, năng suất tăng gấp đôi nên đội 2 đẵ làm xong phần việc còn lại trong 3,5 ngày. Hỏi mỗi đội làm một mình thì sau bao nhiêu ngày sẽ làm xong công việc nói trên ( với năng suất bình thường).
Bài 11: Hải và Sơn cùng làm một công việc trong 7 giờ 20 phút thì xong. Nếu Hải làm trong 5 giờ và Sơn làm trong 6 giờ thì cả hai làm được khối lượng công việc. Hỏi mỗi người làm công việc đó trong mấy giờ thì xong.
Bài 12: Một máy bơm muốn bơm đầy nước vào một bể chứa trong một thời gian quy định thì mỗi giờ phải bơm được 10m3. Sau khi bơm được dung tích bể chứa, người công nhân vận hành cho máy bơm công xuất lớn hơn mỗi giờ bơm được 15 m3. Do đó bể được bơm đầy trước 48 phút so với thời gian quy định. Tính dung tích của bể chứa.
Bài 13: Hai vòi nước cùng chảy vào một bể sau 1 giờ 20 phút thì đầy bể. Nếu mở vòi thứ nhất chảy trong 10 phút và vòi thứ hai chảy trong 12 phút thì đầy bể. Hỏi nếu mỗi vòi chảy một mình thì bao lâu mới đầy bể.
Bài 14: Hai người thợ cùng làm một công việc thì xong trong 18 giờ. Nếu người thứ nhất làm trong 4 giờ, người thứ hai làm trong 7 giờ thì được 1/3 công việc. Hỏi mỗi người làm một mình thì mất bao lâu sẽ xong công việc?
Bài 15: Để hoàn thành một công việc hai tổ phải làm trong 6 giờ. Sau 2 giờ làm chung thì tổ hai được điều đi làm việc khác. Tổ một đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thhì bao lâu xong công việc đó?
Bài 16: Hai đội công nhân cùng đào một con mương. Nếu họ cùng làm thì trong 2 ngày sẽ xong công việc. Nếu làm riêng thì đội haihoàn thành công việc nhanh hơn đội một là 3 ngày. Hỏi nếu làm riêng thì mỗi đội phải làm trong bao nhiêu ngày để xong công việc?
Bài 17: Hai chiếc bình rỗng giống nhau có cùng dung tích là 375 lít. ậ mỗi binmhf có một vòi nước chảy vào và dung lượng nước chảy trong một giờ là như nhau. Người ta mở cho hai vòi cùng chảy vào bình nhưng sau 2 giờ thì khoá vòi thứ hai lại và sau 45 phút mới tiếp tục mở lại. Để hai bình cùng đầy một lúc người ta phải tăng dung lượng vòi thứ hai thêm 25 lít/giờ. Tính xem mỗi giờ vòi thứ nhất chảy được bao nhiêu lít nước.
Bài 18: Hai người A và B làm xong công việc trong 72 giờ, còn người A và C làm xong công việc trong 63 giờ và người B và C làm xong công việc ấy trong 56 giờ. Hỏi nếu mỗi người làm một mình thì trong bao lâu sẽ làm xong công việc. Nếu ba người cùng làm sẽ hoàn thành công việc trong mấy giờ?
Bài 19: Ba công nhân cùng làm 1 công việc thì xong sớm hơn 18h so với người thứ 3 làm 1 mình, sớm hơn 3h so với người thứ 2 làm một mình và bằng nửa thời gian so với người 1 làm 1 mình. Tính thời gian của mỗi người khi làm 1 mình.
Bài 20: Hai người cùng làm chung một công việc trong giờ thì xong. Nếu mỗi người làm một mình thì người thứ nhất hoàn thành công việc trong ít hơn người thứ hai là 2 giờ. Hỏi nếu làm một mình thì mỗi người phải làm trong bao nhiêu thời gian để xong công việc?
Bài 21: Một công nhân dự định làm 150 sản phẩm trong một thời gian nhất định. Sau khi làm được 2h với năng suất dự kiến, người đó đã cải tiến các thao tác nên đã tăng năng suất được 2 sản phẩm mỗi giờ và vì vậy đã hoàn thành 150 sản phẩm sớm hơn dự kiến 30 phút. Hãy tính năng suất dự kiến ban đầu.
Bài 22: Hai đội công nhân cùng làm chung một công việc. Thời gian để đội I làm một mình xong công việc ít hơn thời gian để đội II làm một mình xong công việc đó là 4 giờ. Tổng thời gian này gấp 4,5 lần thời gian hai đội cùng làm chung để xong công việc đó. Hỏi mỗi đội làm một mình thì phải bao lâu mới xong ?
Bài 23: Hai vòi nước chảy chung vào một bể thì sau giờ đầy bể. Mỗi giờ lượng nước của vòi I chảy được bằng lượng nước chảy được của vòi II. Hỏi mỗi vòi chảy riêng thì trong bao lâu đầy bể.
Dạng 3: Toán chuyển động
Bài 1: Một ô tô đi từ tỉnh A đến tỉnh B với một vận tốc đã định. Nếu vận tốc tăng thêm 20 km/h thì thời gian đi được sẽ giảm 1 giờ. Nếu vận tốc giảm bớt 10 km/h thì thời gian đi sẽ tăng thêm 1 giờ. Tính vận tốc và thời gian dự định của ô tô.
Bài 2: Hai địa điểm A và B cách nhau 85 km. Cùng lúc, một canô đi xuôi dòng thừ A đến B và một canô đi ngược dòng từ B đến A, sau 1 giờ 40 phút thì gặp nhau. Tính vận tốc thật của mỗi canô, biết rằng vận tốc canô đi xuôi dòng lớn hơn vận tốc canô đi ngược dòng là 9 km/h và vận tốc dòng nước là 3 km/h (vận tốc thật của các canô không đổi).
Bài 3: Quãng đường AB dài 200 km. Cùng lúc một xe máy đi từ A đến B và một ô tô đi từ B đến A. Xe máy và ô tô gặp nhau tại điểm C cách A 120 km. Nếu xe máy khởi hành sau ô tô 1 giờ thì gặp nhau tại điểm D cách C 24 km. Tính vận tốc của ô tô và xe máy.
Bài 4: Một xe khách và một xe du lịch khởi hành đồng thời từ A để đi đến B. Biết vận tốc của xe du lịch lớn hơn vận tốc xe khách là 20 km/h. Do đó xe du lịch đến B trước xe khách 50 phút. Tính vận tốc mỗi xe, biết quãng đường AB dài 100 km.
Bài 5: Một người đi xe máy từ A đến B. Vì có việc gấp phải đến B trước thời gian dự định là 45 phút nên người đó tăng vận tốc lên mỗi giờ 10 km. Tính vận tốc mà người đó dự định đi, biết quãng đờng AB dài 90 km.
Bài 6: Một người đi xe máy từ A tới B. Cùng một lúc một người khác cũng đi xe máy từ B tới A với vận tốc bằng vận tốc của người thứ nhất. Sau 2 giờ hai người gặp nhau. Hỏi mỗi người đi cả quãng đường AB hết bao lâu?
Bài 7: Một canô ngược dòng từ bến A đến bến B với vận tốc 20 km/h, sau đó lại xuôi từ bến B trở về bến A. Thời gian canô ngược dòng từ A đến B nhiều hơn thời gian canô xuôi dòng từ B trở về A là 2 giờ 40 phút. Tính khoảng cách giữa hai bến A và B. Biết vận tốc dòng nước là 5 km/h, vận tốc riêng của canô lúc xuôi dòng và lúc ngược dòng bằng nhau.
Bài 8: Xe máy thứ nhất đi trên quảng đường từ Hà Nội về Thái Bình hết 3 giờ 20 phút. Xe máy thứ hai đi hết 3 giờ 40 phút. Mỗi giờ xe máy thứ nhất đi nhanh hơn xe máy thứ hai 3 km.
Tính vận tốc của mỗi xe máy và quảng đường từ Hà Nội đến Thái Bình?
Bài 9: Đoạn đường AB dài 180 km. Cùng một lúc xe máy đi từ A và ô tô đi từ B xe máy gặp ô tô tại C cách A 80 km. Nếu xe máy khởi hành sau 54 phút thì chúng gặp nhau tại D cách A là 60 km. Tính vận tốc của ô tô và xe máy.
Bài 10: Một ô tô đi trên quảng đường dai 520 km. Khi đi được 240 km thì ô tô tăng vận tốc thêm 10 km/h nữa và đi hết quảng đường còn lại. Tính vận tốc ban đầu của ô tô biết thời gian đi hết quảng đường là 8 giờ.
Bài 11: Một chiếc Thuyền khởi hành từ bến sông A, sau 5 giờ 20 phút một Ca nô chạy từ bến sông A đuổi theo và gặp thuyền cách bến A 20 km. Hỏi vận tốc của thuyền, biết rằng Ca nô chạy nhanh hơn Thuyền 12 km/h.
Bài 12: Quãng đường AB dài 270 km. Hai Ô tô khởi hành cùng một lúc đi từ A đến B. Ô tô thứ nhất chạy nhanh hơn Ô tô thứ hai 12 km/h, nên đến trước. Ô tô thứ hai 40 phút. Tính vận tốc của mỗi Ô tô.
Bài 13: Một Tàu thuỷ chạy trên một khúc sông dài 80 km, cả đi và về mất 8 giờ 20 phút. Tính vận tốc của Tàu thuỷ khi nước yên lặng, biết rằng vận tốc của dòng nước là 4 km/h.
Bài 14: Hai Ô tô khởi hành cùng một lúc từ địa điểm A đến địa điểm B dài 240 km. Mỗi giờ Ô tô thứ nhất chạy chanh hơn Ô tô thứ hai 12 km/h nên đến địa điểm B trước Ô tô thứ hai là 100 phút. Tính vận tốc của mỗi Ô tô.
Bài 15: Một Ca nô xuôi dòng 42 km rồi ngước dòng trở lại 20 km hết tổng cộng 5 giờ. Biết vận tốc của dòng chảy là 2 km/h. Tính vận tốc của Ca nô lúc dòng nước yên lặng.
Bài 16: Hai người đi xe đạp cùng xuất phát một lúc đi từ A đến B dài 30 km, vận tốc của họ hơn kém nhau 3 km/h nên đến B sớm muộn hơn nhau 30 phút. Tính vận tốc của mỗi người.
Bài 17: Một người đi từ tỉnh A đến tỉnh B cách nhau 78 km. sau đó 1 giờ người thứ hai đi từ tỉnh B đến tỉnh A hai người gặp nhau tại địa điểm C cách B 36 km. Tính thời gian mỗi người đã đi từ lúc khởi hành đến lúc gặp nhau, biết vận tốc người thứ hai lớn hơn vận tốc người thứ nhất là 4 km/h.
Bài 18: Quãng đường AB dài 120 km. Hai Ô tô khởi hành cùng một lúc đi từ A đến B,Ô tô thứ nhất chạy nhanh hơn Ô tô thứ hai là 10 km/h nên đến B trước Ô tô thứ hai 24 phút. Tính vận tốc mỗi xe.
Bài 19: Một người dự định đi từ A đến B với thời gian đẵ định. Nếu người đó tăng vận tốc thêm 10 km/h thì đến B sớm hơn dự định 1 giờ. Nếu người đó giảm vận tốc đi 10 km/h thì đến B muộn hơn dự định 2 giờ. Tính vận tốc, thời gian dự định đi và độ dài quãng đường AB.
Bài 20: Một Ca nô xuôi dòng 1 km và ngược dòng 1km hết tất cả 3,5 phút. Nếu Ca nô xuôi 20 km và ngược 15 km thì hết 1 giờ. Tính vận tốc dòng nước và vận tốc riêng của Ca nô.
Bài 21: Bạn Hà dự định đi từ A đến B cách nhau 120 km trong một thời gian đẵ định. Sau khi 1 giờ, Hà nghỉ 10 phút, do đó để đến B đúng hẹn Hà phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của Hà.
Bài 22: Một ô tô khởi hành từ A với vận tốc 50 km/h. Qua 1 giờ 15 phút ô tô thứ hai cũng khởi hành từ A đi cùng hướng với ô tô thứ nhất với vận tốc 40 km/h. Hỏi sau mấy giờ thì ô tô gặp nhau, điểm gặp nhau cách A bao nhiêu km?
Bài 23: Một ca nô xuôi dòng 50 km rồi ngược dòng 30 km. Biết thời gian đi xuôi dòng lâu hơn thời gian ngược dòng là 30 phút và vận tốc đi xuôi dòng lớn hơn vận tốc đi ngược dòng là 5 km/h. Tính vận tốc lúc đi xuôi dòng?
Bài 24: Hai ô tô cùng khởi hành cùng một lúc từ A đến B cách nhau 150 km. Biết vận tốc ô tô thứ nhất lớn hơn vận tốc ô tô thứ hai là 10 km/h và ô tô thứ nhất đến B trước ô tô thứ hai là 30 phút. Tính vânl tốc của mỗi ô tô.
Bài 25: Một chiếc thuyền đi trên dòng sông dài 50 km. Tổng thời gian xuôi dòng và ngược dòng là 4 giờ 10 phút. Tính vận tốc thực của thuyền biết rằng một chiếc bè thả nổi phải mất 10 giờ mới xuôi hết dòng sông.
Bài 26: Một người đi xe đạp từ A đến B cách nhau 108 km. Cùng lúc đó một ô tô khởi hành từ B đến A với vận tốc hơn vận tốc xe đạp là 18 km/h. Sau khi hai xe gặp nhau xe đạp phải đi mất 4 giờ nữa mới tới B. Tính vận tốc của mỗi xe?
Bài 27: Một ca nô xuôi dòng từ A đến B cách nhau 100 km. Cùng lúc đó một bè nứa trôi tự do từ A đến B. Ca nô đến B thì quay lại A ngay, thời gian cả xuôi dòng và ngược dòng hết 15 giờ. Trên đường ca nô ngược về A thì gặp bè nứa tại một điểm cách A là 50 km. Tìm vận tốc riêng của ca nô và vận tốc của dòng nước?
Bài 28: Một ca nô chạy trên sông 7h xuôi dòng 108km và ngược dòng 63km. Một lần khác ca nô cũng chạy 7h xuôi dòng 81km và ngược dòng 84km. Tính vận tốc của ca nô và vận tốc của dòng nước?
Bài 29: Hai tỉnh cách nhau 180km. Cùng một lúc một ô tô đi từ A đến B và một xe máy đi từ B đến A. Hai xe gặp nhau tại thị trấn C. Từ C đi đến B ô tô đi hết 2h, từ C đi về A xe máy đi hết 4,5h. Tính quãng đường AB, biết rằng trên quãng đường AB hai xe chạy với vận tốc không đổi ?
Bài 30: Một ô tô tải đi từ A đến B với vận tốc 30km/h, sau đó một thời gian một xe con cũng xuất phát từ A đến B với vận tốc 40km/h và nếu không có gì thay đổi thì đuổi kịp xe tải tại B, nhưng sau khi đi được nửa đường AB thì xe con tăng vận tốc thành 45km/h nên sau đó 1h thì đuổi kịp xe tải. Tính quãng đường AB.
Bài 31: Một xe ô tô tải đi từ A đến B với vận tốc 30km/h, sau đó một thời gian 1 xe con xuất phát từ A với vận tốc 40km/h và nếu không có gì thay đổi thì đuổi kịp xe ô tô tải tại B. Nhưng ngay sau khi đi được nửa quãng đường thì xe con tăng vận tốc thành 45km/h nên sau đó 1h thì đuổi kịp xe tải. Tính quãng đường AB.
Bài 32: Hai ô tô cùng khởi hành một lúc tại hai địa điểm A và B và đi ngược chiều nhau. Sau khi khởi hành được 2h thì họ gặp nhau cách trung điểm AB là 15km. Nếu vận tốc xe nhanh giảm đi một nửa vận tốc ban đầu thì hai xe gặp nhau khi khởi hành là 2h 48 phút. Tìm vận tốc của mỗi xe.
Bài 33: Một bè nứa trôi tự do với vận tốc bằng vận tốc của dòng nước. Một ca nô cùng rời bến A để xuôi dòng sông ca nô xuôi dòng được 144 km thì quay trở về bến A ngay cả đi lẫn về hết 21h trên đường ca nô trở về A khi còn cách bến A 36km thì gặp bè nứa. Tìm vận tốc riêng của ca nô và vận tốc của dòng nước?
Bài 34: Một ô tô đi từ A đến B trong một thời gian nhất định. Nếu đi với vận tốc 48km/h thì đến sớm hơn dự định là 1 giờ, nếu đi với vận tốc 60km/h thì đến sớm hơn dự định là 2 giờ. Tính quãng đường AB.
Bài 35: Quãng đường từ Quy Nhơn đến Bồng Sơn dài 100 km. Cùng một lúc một xe máy khởi hành từ Quy Nhơn đi Bồng Sơn và một xe ô tô khởi hàng từ Bồng Sơn đi Quy Nhơn. Sau khi hai xe gặp nhau, xe máy đi 1 giờ 30 phút nữa mới đến Bồng Sơn. Biết vận tốc hai xe không thay đổi trên suốt quãng đường đi và vận tốc xe máy kém vận tốc xe ô tô là 20 km/h. Tính vận tốc của mỗi xe.
Bài 36: Một xe du lịch đi từ tỉnh A đến tỉnh B dài 480 km với một vận tốc dự định. Nhưng sau khi đi được 2 giờ với vận tốc dự định thì xe bị hỏng nên dựng lại nghỉ để sửa chữa 30 phút sau đó xe đi trên quãng đường còn lại với vận tốc tăng thêm 20 km/h nữa. Nên đã đến B sớm hơn dự định 1 giờ. Tính vận tốc dự định và thời gian xe chạy trên đường.
Bài 37: Một xe tải và một xe con cùng khởi hành từ A đi đến B. Xe tải đi với vận tốc 40km/h, xe con đi với vận tốc 60km/h. Sau khi mỗi xe đi được nửa quãng đường thì xe con nghỉ 40 phút rồi chạy tiếp đến B. Xe tải trên quãng đường còn lại đã tăng vận tốc thêm 10km/h nhưng vẫn đến B chậm hơn xe con nửa giờ. Hãy tính quãng đường AB.
Bài 38: Một người đi xe máy từ A đến B cách nhau 120km với vận tốc dự định trước. Sau khi đi được 1/3 quãng đường AB người đó tăng vận tốc lên 10km/h trên quãng đường còn lại. Tìm vận tốc dự định và thời gian lăn bánh trên đường, biết rằng người đó đến B sớm hơn dự định 24 phút.
Bài 39: Một xe tải và một xe con cùng khởi hành từ A đi đến B. Xe tải đi với vận tốc 40km/h, xe con đi với vận tốc 60km/h. Sau khi mỗi xe đi được nửa đường thì xe con nghỉ 40 phút rồi chạy tiếp đến B; xe tải trên quãng đường còn lại đã tăng vận tốc thêm 10km/h nhưng vẫn đến B chậm hơn xe con nửa giờ. Hãy tính quãng đường AB.
Bài 40: Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn 10km thì đến sớm hơn dự định 3 giờ, cũng xe chạy chậm lại mỗi giờ 10km thì đến nơi chậm mất 5 giờ. Tính vận tốc của xe lúc đầu, thời gian dự định và chiều dài quãng đường AB.
Dạng 4: Toán có nội dung hình học
Bài 1: Một tam giác có chiều cao bằng cạnh đáy. Nếu chiều cao tăng thêm và cạnh đáy giảm đi thì diện tích của nó tăng thêm . Tính chiều cao và cạnh đáy của tam giác.
Bài 2: Một khu vườn hình chữ nhật có chu vi bằng . Nếu tăng chiều rộng lên bốn lần và chiều dài lên ba lần thì chu vi của khu vườn sẽ là . Hãy tìm diện tích của khu vườn ban đầu.
Bài 3: Người ta muốn làm một chiếc thùng tôn hình trụ không nắp có bán kính đáy là 25cm, chiều cao của thùng là 60cm. Hãy tính diện tích tôn cần dùng (không kể mép nối). Thùng tôn đó khi chứa đầy nước thì thể tích nước chứa trong thùng là bao nhiêu.
Bài 4: Một thửa ruộng hình chữ nhật có diện tích là . Tính độ dài các cạnh của thửa ruộng. Biết rằng nếu tăng chiều rộng của thửa ruộng lên 2m và giảm chiều dài của thửa ruộng đi 5m thì diện tích của thửa ruộng sẽ tăng thêm .
Bài 5: Tính chiều dài và chiều rộng của mảnh đất hình chữ nhất biết rằng: Nếu tăng gấp đôi chiều dài và giảm một nửa chiều rộng thì chu vi mảnh đất tăng lên 180cm. Nếu tăng gấp đôi chiều rộng và giảm một nửa chiều dài thì chu vi tăng lên 120cm.
Bài 6: Tính các kích thước của hình chữ nhật có diện tích 40 cm2 , biết rằng nếu tăng mỗi kích thước thêm 3 cm thì diện tích tăng thêm 48 cm2.
Bài 7: Cạnh huyền của một tam giác vuông bằng 5 m. Hai cạnh góc vuông hơn kém nhau 1m. Tính các cạnh góc vuông của tam giác.
Bài 8: Tìm hai cạnh của một tam giác vuông biết cạnh huyền bằng 13 cm và tổng hai cạnh góc vuông bằng 17.
Bài 9: Một khu vườn Hình chữ nhật có chu vi 280 m. Người ta làm một lối đi xung quanh vườn ( thuộc đất vườn ) rộng 2 m, diện tích còn lại để trồng trọt là 4256 m2. Tính kích thước ( các cạnh) của khu vườn đó
Bài 10: Một thửa ruộng hình chữ nhật có chu vi 250 m. Tính diện tích của thửa ruộng biết rằng nếu chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng không đổi.
Bài 11: Cho một tam giác vuông. Khi ta tăng mỗi cạnh góc vuông lên 2 cm thì diện tích tăng 17 cm2. Nếu giảm các cạnh góc vuông đi một cạnh đi 3 cm một cạn 1 cm thì diện tích sẽ giảm đi 11cm2. Tìm các cạnh của tam giác vuông đó.
Bài 12: Một hình chữ nhật có đường chéo bằng 13 m, chiều dài hơn chiều rộng 7 m. Tính diện tích hình chữ nhật đó?
Bài 13: Một thửa ruộng hình chữ nhật có chu vi là 250 m. Tính diện tích của thửa ruộng biết rằng chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng không thay đổi.
Bài 14: Một cái sân hình tam giác có diện tích 180 m2 . Tính cạnh đáy của sân biết rằng nếu tăng cạnh đáy 4 m và giảm chiều cao tương ứng 1 m thì diện tích không đổi.
Bài 15: Một miếng đất hình thang cân có chiều cao là 35 m hai đáy lần lượt bằng 30 m và 50 m người ta làm hai đoạn đường có cùng chiều rộng. Các tim đừng lần lượt là đường trung bình của hình thang và đoạn thẳng nối hai trung điểm của hai đáy. Tính chiều rộng đoạn đường đó biết rằng diện tích phần làm đường bằng diện tích hình thang.
Bài 16: Tính diện tích của một hình chữ nhật. Biết rằng chiều dài hơn chiều rộng là 7m và độ dài đường chéo là 13m.
Bài 17: Một thửa đất hình chữ nhật có chu vi bằng 198 m, diện tích bằng 2430 m2. Tính chiều dài và chiều rộng của thửa đất hình chữ nhật đã cho.
Bài 18: Một khu đất hình chữ nhật có chu vi là 280m, người ta làm đường đi xung quanh rộng 2m nên diện tích phần còn lại để trồng vườn là 4256m2. Tính kích thước ban đầu của khu vườn.
Dạng 5: Các dạng khác
Bài 1: Hai giá sách có 450 cuốn. Nếu chuyển 50 cuốn từ giá thứ nhất sang giá thứ hai thì số sách trên giá thứ hai bằng số sách ở giá thứ nhất. Tính số sách trên mỗi giá.
Bài 2: Hai xí nghiệp theo kế hoạch phải làm tổng cộng 360 dụng cụ. Thực tế, xí nghiệp I vượt mức kế hoạch 10%, xí nghiệp II vượt mức kế hoạch 15%, do đó cả hai xí nghiệp đã làm được 404 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch.
Bài 3: Một công nhân dự định làm 72 sản phẩm trong một thời gian đã định. Nhưng thực tế xí nghiệp lại giao 80 sản phẩm. Mặc dù người đó mỗi giờ đã làm thêm một sản phẩm so với dự kiến, nhưng thời gian hoàn thành công việc vẫn chậm so với dự định là 12 phút. Tính số sản phẩm dự kiến làm trong 1 giờ của người đó. Biết mỗi giờ người đó làm không quá 20 sản phẩm.
Bài 4: Theo kế hoạch, một công nhân phải hoàn thành 60 sản phẩm trong thời gian nhất định. Nhưng do cải tiến kĩ thuật nên mỗi giờ người công nhân đó đã làm thêm được 2 sản phẩm. Vì vậy, chẳng những hoàn thành kế hoạch sớm hơn dự định 30 phút mà còn vượt mức 3 sản phẩm. Hỏi theo kế hoạch, mỗi giờ người đó phải làm bao nhiêu sản phẩm.
Bài 5: Một đội công nhân hoàn thành một công việc với mức 420 ngày công thợ (nghĩa là nếu công việc đó chỉ có một người làm thì phải mất 420 ngày). Hãy tính số công nhân của đội biết rằng nếu đội tăng thêm 5 người thì số ngày để đội hoàn thành công việc sẽ giảm đi 7 ngày.
Bài 6: Một đội xe vận tải phải vận chuyển 28 tấn hàng đến một địa điểm qui định. Vì trong đội có 2 xe phải điều đi làm việc khác nên mỗi xe phải chở thêm 0,7 tấn hàng nữa. Tính số xe của đội lúc đầu.
Bài 7: Người ta dự kiến trồng 300 cây trong một thời gian đã định. Do điều kiện thuận lợi nên mỗi ngày trồng được nhiều hơn 5 cây so với dự kiến, vì vậy đã trồng xong 300 cây ấy trước 3 ngày. Hỏi dự kiến ban đầu mỗi ngày trồng bao nhiêu cây? (Giả sử số cây dự kiến trồng mỗi ngày là bằng nhau).
Bài 8: Năm ngoái dân số của hai tỉnh A và B là 4 triệu người. Dân số tỉnh A năm nay tăng 1,2% còn tỉnh B tăng 1,1%, tổng dân số của hai tỉnh năm nay là 4 045 000 người. Tính dân số của mỗi tỉnh năm ngoái và năm nay.
Bài 9: Trong tháng đầu hai tổ công nhân sản xuất được 800 chi tiết máy. Sang tháng thứ hai tổ vượt mức 15%, tổ II sản xuất vượt mức 20%, do đó cuối tháng cả hai tổ sản xuất được 945 chi tiết máy. Hỏi rằng trong tháng đầu, mỗi tổ công nhân sản xuất được bao nhiêu chi tiết máy.
Bài 10: Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kỹ thuật mới nên tổ I đã sản xuất vượt mức kế hoạch là 18% và tổ II vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ là bao nhiêu.
Bài 11: Trong tháng đầu, hai tổ công nhân sản xuất được 720 chi tiết máy. Sang tháng thứ hai tổ vượt mức 15%, tổ II sản xuất vượt mức 12%, do đó cuối tháng cả hai tổ sản xuất được 819 chi tiết máy. Hỏi rằng trong tháng đầu, mỗi tổ công nhân sản xuất được bao nhiêu chi tiết máy.
Bài 12: Dân số của thành phố Hà Nội sau 2 năm tăng từ 200000 lên 2048288 người. Tính xem hàng năm trung bình dân số tăng bao nhiêu phần trăm.
Bài 13: Bác An vay 10 000 000 đồng của ngân hàng để làm kinh tế. Trong một năm đầu bác chưa trả được nên số tiền lãi trong năm đầu được chuyển thành vốn để tính lãi năm sau. Sau 2 năm bác An phải trả là 11 881 000 đồng. Hỏi lãi suất cho vay là bao nhiêu phần trăm trong một năm?
Bài 14: Theo kế hoạch hai tổ sản xuất 1000 sản phẩm trong một thời gian dự định. Do áp dụng kỹ thuật mới nên tổ I vượt mức kế hoạch 15% và tổ hai vượt mức 17%. Vì vậy trong thời gian quy định cả hai tổ đã sản xuất được tất cả được 1162 sản phẩm. Hỏi số sản phẩm của mỗi tổ là bao nhiêu?
Bài 15: Một phòng họp có 240 ghế được xếp thành các dãy có số ghế bằng nhau. Nếu mỗi dãy bớt đi một ghế thì phải xếp thêm 20 dãy mới hết số ghế. Hỏi phòng họp lúc đầu được xếp thành bao nhiêu dãy ghế.
Bài 16: Hai giá sách có 400 cuốn. Nếu chuyển từ giá thứ nhất sang giá thứ hai 30 cuốn thì số sách ở giá thứ nhất bằng số sách ở ngăn thứ hai. Tính số sách ban đầu của mỗi ngăn.
Bài 17: Người ta trồng 35 cây dừa trên một thửa đất hình chữ nhật có chiều dài 30 m chiều rộng là 20 m thành những hàng song song cách đều nhau theo cả hai chiều. Hàng cây ngoài cùng trồng ngay trên biên của thửa đất. Hãy tính khoảng cách giữa hai hàng liên tiếp?
Bài 18: Hai người nông dân mang 100 quả trứng ra chợ bán. Số trứng của hai người không bằng nhau nhưng số tiền thu được của hai người lại bằng nhau. Một người nói với người kia: “ Nếu số trứng của tôi bằng số trứng của anh thì tôi bán được 15 đồng ”. Người kia nói “ Nếu số trứng của tôi bằng số trứmg của anh tôi chỉ bán được đồng thôi”. Hỏi mỗi người có bao nhiêu quả trứng?
Bài 19: Một hợp kim gồm đồng và kẽm trong đó có 5 gam kẽm. Nếu thêm 15 gam kẽm vào hợp kim này thì được một hợp kim mới mà trong đó lượng đồng đã giảm so với lúc đầu là 30%. Tìm khối lượng ban đầu của hợp kim?
Bài 20: Để chở một số bao hàng bằng ô tô người ta nhận thấy nếu mỗi xe chở 22 bao thì còn thừa 1 bao, nếu bớt đi 1 ô tô thì có thể phân phối đều các bao hàng cho các ô tô còn lại. Hỏi lúc đầu có bao nhiêu ô tô, biết rằng mỗi ô tô chở không quá 32 bao?
Bài 21: Trong một buổi liên hoan 1 lớp mời 15 vị khách đến dự. Vì lớp đã có 40 h/s nên phải kê thêm 1 dãy nữa mới đủ chỗ ngồi, biết rằng mỗi dãy ghế số người ngồi như nhau và ngồi không quá 5 người. Hỏi lớp học lúc đầu có bao nhiêu dãy ghế ?
Bài 22: Một nhóm công nhân đặt kế hoạch sản xuất 200 sản phẩm. Trong 4 ngày đầu họ thực hiện đúng mức đề ra, những ngày còn lại họ làm vượt mức mỗi ngày 10 sản phẩm, nên đã hoàn thành sớm 2 ngày. Hỏi theo kế hoạch mỗi ngày nhóm công nhân cần sản xuất bao nhiêu sản phẩm.